Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì
A. – 3 ≤ m ≤ 9;
B. [m<−3m>9.
C. – 3 < m < 9;
D. [m≤−3m≥9.
Đáp án đúng là: C
Ta có f(x) > 0 với {a=1>0Δ=(m+1)2-4.(2m+7)<0⇔{a=1>0Δ=m2−6m−27<0
Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.
Ta có bảng xét dấu
Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.
Vậy đáp án đúng là C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng ∀x≥3?
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x2 + 12x + 36 là:
Các giá trị m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là:
Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
Cho hàm số f(x) = mx2 – 2mx + m + 1. Giá trị của m để f(x) > 0, ∀x∈R.
Phương trình x2 – 2(m – 1)x + m – 3 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0, ∀x∈R
Bất phương trình: (x2−3x−4).√x2−5<0 có bao nhiêu nghiệm nguyên dương?
Bài 17: Dấu của tam thức bậc hai