Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
A. \[\left[ \begin{array}{l}m \le - 22\\m \ge 2\end{array} \right.\];
B. – 22 ≤ m ≤ 2;
C. – 22 < m < 2;
D. \[\left[ \begin{array}{l} - 22 \le m \le 2\\m = 3\end{array} \right.\].
Đáp án đúng là: B
Ta có f(x) > 0 vô nghiệm \( \Leftrightarrow f\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\).
Xét m = 3 ta có f(x) = 5x – 4 với \(x > \frac{4}{5}\) thì f(x) > 0 nên m = 3 không thỏa mãn.
Xét m ≠ 3 ta có \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = m - 3 < 0\\\Delta = {m^2} + 20m - 44 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 3\\{m^2} + 20m - 44 \le 0\end{array} \right.\)
Xét tam thức bậc hai (biến m): m2 + 20m – 44 có ∆’ = 102 – (-44) = 144 > 0. Do đó tam thức có hai nghiệm phân biệt x = -22 và x = 2.
Ta có bảng xét dấu
Để \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m < 3\\ - 22 \le m \le 2\end{array} \right. \Leftrightarrow - 22 \le m \le 2\)
Vậy đáp án đúng là B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x2 + 12x + 36 là:
Các giá trị m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là:
Cho hàm số f(x) = mx2 – 2mx + m + 1. Giá trị của m để f(x) > 0, \(\forall x \in \mathbb{R}\).
Phương trình x2 – 2(m – 1)x + m – 3 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\)
Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?
Bài 17: Dấu của tam thức bậc hai