Nghiệm của phương trình \[\sqrt {2x - 3} = x - 3\]
A. 5;
B. – 3;
C. 6;
D. 4.
Đáp án đúng là: C
Điều kiện của phương trình 2x – 3 ≥ 0 \[ \Leftrightarrow x \ge \frac{3}{2}\]
Ta có \[\sqrt {2x - 3} = x - 3 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\2x - 3 = {(x - 3)^2}\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\{x^2} - 8x + 12 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\\left[ \begin{array}{l}x = 2\\x = 6\end{array} \right.\end{array} \right. \Leftrightarrow x = 6\]
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Phương trình x2 – (m – 1)x + m2 – 3m + 2 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
Tập xác định của hàm số \[y = \frac{{x - 1}}{{{x^2} - x + 3}}\] là
Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây
Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Bài tập cuối chương VI