Hướng dẫn giải:
Đáp án đúng là: D.
Áp dụng công thức tính diện tích tam giác ta có: \(S = \frac{1}{2}bc\sin A\)
Suy ra: \(\sin A = \frac{{2S}}{{bc}}\).
Theo hệ quả định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Do đó: \(\cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{{2S}}{{bc}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}}\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có BC = a, AC = b, AB = c. Khẳng định nào sau đây là đúng?
Tam giác ABC có BC = a, CA = b, AB = c.
Chứng minh rằng: a = b.cos C + c.cos B.