Cho sinα = √6/3. Giá trị của biểu thức
A. 51/7
B. 31/4
C. 45/4
D. 22/3
Cách 1. Suy luận.
Tử số của P lớn hơn hoặc bằng 2, còn mẫu số là sin2 a. cos2 a = 2/3. 1/3 = 2/9 < 1/4, nên P ≤ 8. Do đó các phương án A, B, D bị loại. Đáp án là C.
Cách 2. Tính trực tiếp.
sina = √6/3 ⇒ sin2 a = 2/3 ⇒ cos2 a = 1/3.
Vậy tan2 a = 2, cot2 a = 1/2.
Do đó P = 45/4. Đáp án là C.
Đáp án: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho π < α 3π/2. Xác định dấu của các giá trị lượng giác sau
a) cos(α - π/2) b) sin(π/2 + α)
c) tan(3π/2 - α) d) cot(α + π)
Không dùng bảng số và máy tính, rút gọn các biểu thức
a) A = tan18οtan288ο + sin32οsin148ο - sin302οsin122ο
b)
Cho tanα + cotα = -2. Giá trị của biểu thức N = tan3α + cot3α là
Chứng minh rằng với mọi α, ta luôn có
a) sin(α + π/2) = cosα
b) cos(α + π/2) = -sinα
c) tan(α + π/2) = -cotα
d) cot(α + π/2) = -tanα
Cho tanα + cotα = m, hãy tính theo m
a) tan2α + cot2α
b) tan3α + cot3α
Chứng minh rằng với mọi α làm cho biểu thức có nghĩa, biểu thức đó không thể là một số âm.