Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi
(h.2.26)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai véc tơ . Tính tích vô hướng và suy ra góc giữa hai vec tơ
Cho hai vectơ a và vectơ b đều khác vectơ 0. Tích vô hướng khi nào dương, khi nào âm và khi nào bằng 0
Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng
Cho tam giác ABC có AB = 5 cm, BC = 7 cm, CA = 8 cm.
a) Tính rồi suy ra giá trị của góc A;
b) Tính
Trong mặt phẳng Oxy cho ba điểm A(-1; -1), B(3; 1) và C(6; 0).
a) Chứng minh ba điểm A, B, C không thẳng hàng.
b) Tính góc B của tam giác ABC.
Trong mặt phẳng Oxy cho hai điểm A(5;4) và B(3;-2). Một điểm M di động trên trục hoành Ox. Tìm giá trị nhỏ nhất của
Trong mặt phẳng Oxy cho tam giác ABC với A = (2;4), B = ( - 3;1) và C = (3;1). Tính:
a) Tọa độ điểm D để tứ giác ABCD là hình bình hành;
b) Tọa độ chân của đường cao vẽ từ đỉnh A.
Trong mặt phẳng Oxy, cho tam giác ABC có A = (-1; 1), B = (1; 3) và C = (1; -1)
Chứng minh tam giác ABC là tam giác vuông cân tại A.
Trong mặt phẳng Oxy cho bốn điểm A(3; 4), B(4; 1), C(2; -3), D(-1; 6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.
Trong mặt phẳng Oxy cho bốn điểm A(-1; 1), B(0; 2), C(3; 1) và D(0; -2). Chứng minh rằng tứ giác ABCD là hình thang cân.
Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC, D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD.
Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 11 cm.
a) Tính và chứng tỏ rằng tam giác ABC có góc A tù.
b) Trên cạnh AB lấy điểm M sao cho AM = 2 cm và gọi N là trung điểm của cạnh AC. Tính
Áp dụng tính chất giao hoán và tính chất phân phối của tích vô hướng hãy chứng minh các kết quả sau đây: