Chứng minh rằng diện tích hình bình hành bằng tích hai cạnh liên tiếp với sin của góc xen giữa chúng.
(h.2.29)
Xét hình bình hành ABCD có AB = a, AD = b, góc BAD = α và BH là đường cao, ta có BH ⊥ AD tại H
Gọi S là diện tích hình bình hành ABCD, ta có S = AD. BH với BH = ABsinα
Vậy S = AD.AB.sinα = a.b.sinα
Nếu góc BAD = α thì góc ABC = 180ο - α
Khi đó ta vẫn có sin BAD = sin ABC
Nhận xét: Diện tích hình bình hành ABCD gấp đôi diện tích
tam giác ABD mà tam giác ABD có diện tích là a.b.sinα/2.
Do đó ta suy ra diện tích của hình bình hành bằng a.b.sinα
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Chứng minh rằng trong tam giác ABC ta có các hệ thức:
a) sin A = sinB.cosC + sinC.cosB
b) ha = 2R sinB. sinC
Tam giác ABC có cạnh a = 2√3, b = 2 và góc C = 30ο
a) Tính cạnh c, góc A và diện tích S của tam giác ABC;
b) Tính chiều cao ha và đường trung tuyến ma của tam giác ABC.
Tam giác ABC có các cạnh thỏa mãn điều kiện b + c = 2a. Chứng minh rằng:
a) 2sin A = sin B + sin C;
b)
Tính góc lớn nhất của tam giác ABC biết a = 3, b = 4, c = 6. Tính đường cao ứng với cạnh lớn nhất của tam giác.
Khoảng cách từ A đến C không thể đo trực tiếp vì phải qua một đầm lầy nên người ta làm như sau: Xác định một điểm B có khoảng cách AB = 12m và đo được góc ACB = 37ο (H.2.19). Hãy tính khoảng cách AC biết rằng BC = 5 m.
Tam giác ABC có các cạnh a = 2√3, b = 2√2, c = √6 - √2. Tính các góc A, B và các độ dài ha, R, r của tam giác đó.
Cho tam giác ABC biết các cạnh a = 7cm, b = 23cm, góc C = 130ο. Tính cạnh c, góc A, góc B
Tam giác ABC có các cạnh thỏa mãn điều kiện bc = a2. Chứng minh rằng:
a) sin2A = sinB.sinC
b) hb.hc = h2a
Cho tam giác ABC biết cạnh c = 35cm, góc A = 40ο, góc C = 120ο. Tính các cạnh a, b và góc B
Giả sử chúng ta cần đo chiều cao CD của một cái tháp với C là chân tháp, D là đỉnh tháp. Vì không thể đến chân tháp được nên từ hai điểm A, B có khoảng cách AB = 30 m sao cho ba điểm A, B, C thẳng hàng người ta đo được các góc CAD = 43ο, CBD = 67ο(h.2.18). Hãy tính chiều cao CD của tháp
Gọi ma, mb, mc là các trung tuyến lần lượt ứng với các cạnh a, b, c của tam giác ABC.
a) Tính ma, biết rằng a = 26, b = 18, c = 16
b) Chứng minh rằng: 4(ma2 + mb2 + mc2) = 3(a2 + b2 + c2)
Tam giác ABC có a = 4√7 cm, b = 6 cm, c = 8 cm. Tính diện tích S, đường cao ha và bán kính R của đường tròn ngoại tiếp tam giác đó.
Cho tứ giác lồi ABCD có đường chéo AC = x, đường chéo BD = y và góc tạo bởi AC và BD là α. Gọi S là diện tích của tứ giác ABCD.
a) Chứng minh rằng
b) Nêu kết quả trong trường hợp AC vuông góc với BD.
Cho tứ giác ABC biết a = 14cm, b = 18cm, c = 20cm. Tính góc A, B, C
Cho tứ giác lồi ABCD. Dựng hình bình hành ABDC'. Chứng minh rằng tứ giác ABCD và tam giác ACC' có diện tích bằng nhau.