IMG-LOGO

Câu hỏi:

20/07/2024 145

Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°

A. \({d_1}\): 6x – 5y + 4 = 0 và \({d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\);

Đáp án chính xác

B.\({d_1}:\left\{ \begin{array}{l}x = 2 - 6t\\y = 3 + 5t\end{array} \right.\)\({d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\);

C. d1: x – 2y + 4 = 0 và d2: y + 1 = 0;

D. \({d_1}:\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\) và d2: 3x + 2y – 4 = 0.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

+) Đường thẳng \({d_1}\): 6x – 5y + 4 = 0 có VTPT là \(\overrightarrow {{n_1}} = \left( {6; - 5} \right)\)

Đường thẳng\({d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\) có VTCP là \(\overrightarrow {{u_2}} = \left( { - 6;5} \right)\) nên VTCP là \(\overrightarrow {{n_2}} = \left( {5;6} \right)\)

Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 5.6 + 6.\left( { - 5} \right) = 0\). Do đó d1 d2 hay góc giữa hai đường thẳng bằng 90°.

+) Đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 2 - 6t\\y = 3 + 5t\end{array} \right.\) có VTCP là \(\overrightarrow {{u_1}} = \left( { - 6;5} \right)\)

Đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\) có VTCP là \(\overrightarrow {{u_2}} = \left( { - 6;5} \right)\)

Ta có: \(\frac{{ - 6}}{5} = \frac{{ - 6}}{5}\) nên \(\overrightarrow {{u_1}} \)\(\overrightarrow {{u_2}} \) cùng phương. Do đó hai đường thẳng d1 song song hoặc trùng d2. Do đó góc giữa hai đường thẳng bằng 0°.

+) Đường thẳng d1: x – 2y + 4 = 0 có VTPT là \(\overrightarrow {{n_1}} = \left( {1; - 2} \right)\)

Đường thẳng d2: y + 1 = 0 có VTPT là \(\overrightarrow {{n_2}} = \left( {0;1} \right)\)

Áp dụng công thức tính góc giữa hai đường thẳng ta được:

\[{\rm{cos}}\left( {{d_1};{d_2}} \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {1.0 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{2}{{\sqrt 5 }}\]

(d1 ; d2) ≈ 26°34’.

+) Đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\) có VTCP là \(\overrightarrow {{u_1}} = \left( { - 3;2} \right)\) nên VTCP là \(\overrightarrow {{n_1}} = \left( {2;3} \right)\)

Đường thẳng d2: 3x + 2y – 4 = 0 có VTPT là \(\overrightarrow {{n_2}} = \left( {3;2} \right)\)

Áp dụng công thức tính góc giữa hai đường thẳng ta được:

\[{\rm{cos}}\left( {{d_1};{d_2}} \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2.3 + 3.2} \right|}}{{\sqrt {{2^2} + {3^2}} .\sqrt {{3^2} + {2^2}} }} = \frac{{12}}{{13}}\]

(d1 ; d2) ≈ 22°37’.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường thẳng nào là đường chuẩn của parabol \[{y^2} = 2x\]

Xem đáp án » 14/09/2022 665

Câu 2:

Xét vị trí tương đối của hai đường thẳng:

\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0

Xem đáp án » 14/09/2022 256

Câu 3:

Viết phương trình tham số của đường thẳng d đi qua điểm M(6; –10) và vuông góc với trục Oy?

Xem đáp án » 14/09/2022 249

Câu 4:

Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 02x + 3y – 1 = 0 đến đường thẳng \[\Delta \]: 3x + y + 3 = 0 bằng:

Xem đáp án » 14/09/2022 227

Câu 5:

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

Xem đáp án » 14/09/2022 204

Câu 6:

Cho A (2; –4), B (–5; 3). Tìm tọa độ của \[\overrightarrow {AB} \].

Xem đáp án » 14/09/2022 185

Câu 7:

Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],

biết tiếp tuyến vuông góc đường thẳng d: 3x 4y 2018 = 0.

Xem đáp án » 14/09/2022 179

Câu 8:

Elip \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\] có tiêu cự bằng:

Xem đáp án » 14/09/2022 178

Câu 9:

Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ \[\overrightarrow {MN} \]?

Xem đáp án » 14/09/2022 175

Câu 10:

Cho \[\overrightarrow a \] = (2m; 2), \[\overrightarrow b \]= (2; 7n). Tìm giá trị của m và n để tọa độ của vectơ \[\overrightarrow a - \overrightarrow b \] = (6; 5).

Xem đáp án » 14/09/2022 173

Câu 11:

Một đường thẳng có bao nhiêu vectơ chỉ phương?

Xem đáp án » 14/09/2022 171

Câu 12:

Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0)B(0; b)?

Xem đáp án » 14/09/2022 168

Câu 13:

Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\]\[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:

Xem đáp án » 14/09/2022 168

Câu 14:

Trong hệ tọa độ Oxy cho \[\overrightarrow k \]= (5 ; 2), \[\overrightarrow n \] = (10 ; 8). Tìm tọa độ của vectơ \[3\overrightarrow k - 2\overrightarrow n \].

Xem đáp án » 14/09/2022 163

Câu 15:

Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; 1) là:

Xem đáp án » 14/09/2022 157

LÝ THUYẾT

Bài 7. Bài tập cuối chương VII

Câu hỏi mới nhất

Xem thêm »
Xem thêm »