Cho hai góc α và β (0° ≤ α, β ≤ 180°) với α + β = 180°, giá trị của biểu thức: M = cosα.cosβ – sinβ.sinα là:
Hướng dẫn giải
Đáp án đúng là: A
Vì hai góc α và β (0° ≤ α, β ≤ 180°) là hai góc bù nhau (do α + β = 180°) nên:
cosβ = ‒cosα và sinβ = sinα.
Ta có: M = cosα.cosβ – sinβ.sinα
M = cosα.(‒cosα) ‒ sinα.sinα = ‒cos2α ‒ sin2α
M = ‒(cos2α + sin2α)
Mà cos2α + sin2α = 1 (đã chứng minh ở Câu 11).
Vậy M = ‒1.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho góc α (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Cho tam giác ABC. Giá trị biểu thức sinA.cos(B + C) + cosA.sin(B + C) là:
Giá trị α (0° ≤ α ≤ 180°) thoả mãn tanα = 1,607 gần nhất với giá trị:
Cho góc α với . Giá trị của biểu thức: A = sin2α – 3tanα + cot3α là:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Cho góc α (0° ≤ α ≤ 180°) với tanα = ‒3. Giá trị của bằng bao nhiêu?
Cho hai góc α và β (0° ≤ α, β ≤ 180°) với α + β = 90°. Giá trị của biểu thức P = cosα.cosβ ‒ sinα.sinβ là:
Giá trị của cot22°12'21'' gần với giá trị nào nhất trong các giá trị nào dưới đây?