Phương trình tổng quát của đường thẳng đi qua hai điểm A(–2; 4) và B(1; 0) là:
Hướng dẫn giải
Đáp án đúng là: B
Cách 1:
Ta có \(\overrightarrow {AB} = \left( {3; - 4} \right)\).
Đường thẳng d có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 4} \right)\).
Suy ra đường thẳng d có vectơ pháp tuyến \(\vec n = \left( {4;3} \right)\).
Đường thẳng d đi qua điểm B(1; 0), có vectơ pháp tuyến \(\vec n = \left( {4;3} \right)\).
Suy ra phương trình tổng quát của d: 4(x – 1) + 3(y – 0) = 0.
⇔ 4x + 3y – 4 = 0.
Cách 2:
Phương trình của d là: \(\frac{{x + 2}}{{1 + 2}} = \frac{{y - 4}}{{0 - 4}}\)
\( \Leftrightarrow \frac{{x + 2}}{3} = \frac{{y - 4}}{{ - 4}}\)
⇔ –4(x + 2) = 3(y – 4)
⇔ 4x + 3y – 4 = 0.
Vậy ta chọn phương án B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:
Cho đường thẳng d: 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một phương trình khác của d?
Cho phương trình tham số của đường thẳng d: \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Trong các phương trình sau, phương trình nào là phương trình tổng quát của d?
Cho đường thẳng ∆: \(\left\{ \begin{array}{l}x = - 3 + 5t\\y = 2 - 4t\end{array} \right.\) và các điểm M(32; 50), N(–28; 22), P(17; –14), Q(–3; –2). Các điểm nằm trên ∆ là:
Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là:
Cho tam giác ABC có tọa độ ba đỉnh A(1; 4), B(3; –1), C(6; 2). Phương trình đường trung tuyến AM của tam giác ABC là:
Bài 3. Phương trình đường thẳng