Cho tam giác ABC có tọa độ ba đỉnh A(1; 4), B(3; –1), C(6; 2). Phương trình đường trung tuyến AM của tam giác ABC là:
Hướng dẫn giải
Đáp án đúng là: A
Tam giác ABC có AM là đường trung tuyến.
Suy ra M là trung điểm BC.
Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_B} + {x_C}}}{2} = \frac{{3 + 6}}{2} = \frac{9}{2}\\{y_M} = \frac{{{y_B} + {y_C}}}{2} = \frac{{ - 1 + 2}}{2} = \frac{1}{2}\end{array} \right.\)
Suy ra tọa độ \(M\left( {\frac{9}{2};\frac{1}{2}} \right)\).
Đường trung tuyến AM đi qua hai điểm A(1; 4) và \(M\left( {\frac{9}{2};\frac{1}{2}} \right)\).
Suy ra phương trình AM: \(\frac{{x - 1}}{{\frac{9}{2} - 1}} = \frac{{y - 4}}{{\frac{1}{2} - 4}}\)
\( \Leftrightarrow \frac{{x - 1}}{{\frac{7}{2}}} = \frac{{y - 4}}{{ - \frac{7}{2}}}\)
\( \Leftrightarrow - \frac{7}{2}\left( {x - 1} \right) = \frac{7}{2}\left( {y - 4} \right)\)
⇔ –x + 1 = y – 4
⇔ x + y – 5 = 0.
Vậy ta chọn phương án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:
Cho đường thẳng d: 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một phương trình khác của d?
Cho phương trình tham số của đường thẳng d: \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Trong các phương trình sau, phương trình nào là phương trình tổng quát của d?
Phương trình tổng quát của đường thẳng đi qua hai điểm A(–2; 4) và B(1; 0) là:
Cho đường thẳng ∆: \(\left\{ \begin{array}{l}x = - 3 + 5t\\y = 2 - 4t\end{array} \right.\) và các điểm M(32; 50), N(–28; 22), P(17; –14), Q(–3; –2). Các điểm nằm trên ∆ là:
Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là:
Bài 3. Phương trình đường thẳng