Thứ năm, 07/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 1,979

Tìm các giá trị của tham số m để đồ thị hàm số: y = x4 - 2m2x2 + m4 + 1 có ba điểm cực trị . Đồng thời ba điểm cực trị đó cùng với gốc O tạo thành 1 tứ giác nội tiếp

A. m = ±1

Đáp án chính xác

B. m = 1

C. Không tồn tại m

D. m = -1

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Chọn A

y'=4x3-4m2x

Hàm số có 3 điểm cực trị khi m ≠ 0

Khi đó 3 điểm cực trị là

Gọi I là tâm đường tròn ngoại tiếp( nếu có) của tứ giác ABOC .

Do tính chất đối xứng , ta có

A,O,I thẳng hàng

 AOlà đường kính của đường tròn ngoại tiếp( nếu có) của tứ giác ABOC

Kết hợp điều kiện m=±1 ( thỏa mãn)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các giá trị của tham số m để đồ thị hàm số: y= x4 - 2mx2 + m - 1 có ba điểm cực trị . Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn ngoại tiếp bằng 1

Xem đáp án » 03/01/2022 3,010

Câu 2:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x3-3mx2+3m3 có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48.

Xem đáp án » 03/01/2022 2,153

Câu 3:

Tìm các giá trị của tham số m để đồ thị hàm số: y = x3 - 3x2 - mx + 2 có điểm cực đại và điểm cực tiểu cách đều đường thẳng có phương trình: y=x-1(d) 

Xem đáp án » 03/01/2022 1,843

Câu 4:

Cho hàm số y=x4-2(m+1)x2+m(C) . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số (C) có ba điểm cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại

Xem đáp án » 03/01/2022 868

Câu 5:

Cho hàm số y=x4-2mx2+m-1. Tìm tất cả các giá trị của tham số thưc m để đồ thị hàm số có ba điểm cực trị tạo thành 1 tam giác nhận gốc tọa độ O làm trực tâm

Xem đáp án » 03/01/2022 631

Câu 6:

Tìm các giá trị của tham số m để đồ thị hàm số: y=x4-(3m-1)x2+2m+1 có ba điểm cực trị. Đồng thời ba điểm cực trị đó cùng với điểm D(7;3) nội tiếp được một đường tròn

Xem đáp án » 03/01/2022 621

Câu 7:

Tìm các giá trị của tham số m để đồ thị hàm số: y = x4 - 2mx2 + m có ba điểm cực trị . Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn nội tiếp lớn hơn 1

Xem đáp án » 03/01/2022 589

Câu 8:

Tìm tất cả các giá trị thực của tham số m để điểm M ( 2m3; m) tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số y = 2x3 - 3(2m + 1)x2 + 6m(m + 1)x + 1 một tam giác có diện tích nhỏ nhất

Xem đáp án » 03/01/2022 552

Câu 9:

Tính theo m khoảng cách giữa điểm cực đại và điểm cực tiểu ( nếu có) của đồ thị hàm số: y=13x3-mx2-x+m+1

Xem đáp án » 03/01/2022 538

Câu 10:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x4-2m2x2+1(C) có ba điểm cực trị là ba đỉnh của một tam giác vuông cân

Xem đáp án » 03/01/2022 502

Câu 11:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x4-4(m-1)x2+2m-1 có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác đều

Xem đáp án » 03/01/2022 382

Câu 12:

Tìm các giá trị của tham số m để đồ thị hàm số: y = -x3 + 3x2 + 3(m2 - 1)x - 3m2 - 1 có điểm cực đại và điểm cực tiểu cùng với gốc tọa độ tạo thành tam giác vuông tại O.

Xem đáp án » 03/01/2022 369

Câu 13:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x3-3mx2+4m3 có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng (d):y=x.

Xem đáp án » 03/01/2022 336

Câu 14:

Cho hàm số y=(m-1)x4-3mx2+5. Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại mà không có cực tiểu

Xem đáp án » 03/01/2022 313

Câu 15:

Tìm tất cả các giá trị thực của tham số m để hàm số y=x3-3mx2+3(m2-1)x-m3+m  có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O

Xem đáp án » 03/01/2022 311

LÝ THUYẾT

I. Khái niệm cực đại, cực tiểu.

- Định nghĩa.

Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là -; b là +) và điểm x0 (a; b).

a) Nếu tồn tại số h > 0 sao cho f(x) < f(x0) với mọi x (x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực đại tại x0.

b) Nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x(x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.

- Chú ý:

1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.

Kí hiệu là f (fCT) còn điểm M(x0; f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2. Các điểm cực đại, cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3. Dễ dàng chứng minh được rằng, nếu hàm số y = f(x) có đạo hàm trên khoảng (a; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.

II. Điều kiện đủ để hàm số có cực trị

- Định lí 1

Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K  hoặc trên K \ {x0}; với h > 0.

a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).

b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).

Bài 2: Cực trị của hàm số (ảnh 1)

Ví dụ 1. Tìm các điểm cực trị của hàm số y = – 2x3 + 3x2.

Lời giải:

Hàm số xác định với mọi x.

Ta có: y’ = – 6x2 + 6x

Và y’ = 0 [x=0x=1

Bảng biến thiên:

Bài 2: Cực trị của hàm số (ảnh 1)

Từ bảng biến thiên, suy ra x = 0 là điểm cực tiểu của hàm số và x = 1 là điểm cực đại của hàm số.

Ví dụ 2. Tìm các điểm cực trị của hàm số y=2-x2x+ 2.

Lời giải:

Hàm số đã cho xác định với x-1.

Ta có: y'=-6(2x+2)2<0

Vậy hàm số đã cho không có cực trị (vì theo khẳng định 3 của chú ý trên, nếu hàm số đạt cực trị tại x0 thì y’(x0) = 0).

III. Quy tắc tìm cực trị .

- Quy tắc 1.

1. Tìm tập xác định.

2. Tính f’(x). Tìm các điểm tại đó f’(x) bằng 0 hoặc f’(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

- Định lí 2.

Giả sử hàm số y = f(x) có đạo  hàm cấp hai trong khoảng (x0 – h; x0 + h) với h > 0. Khi đó:

a) Nếu f’(x0) = 0; f”(x0) > 0 thì x0 là điểm cực tiểu;

b) Nếu f’(x0) = 0; f”(x0) < 0 thì x0 là điểm cực đại.

- Quy tắc II.

1. Tìm tập xác định

2. Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu xi ( i = 1; 2; ….; n) là các nghiệm của nó.

3. Tính f”(x) và f”(xi).

4. Dựa vào dấu của f”(xi) suy ra tính chất cực trị của điểm xi.

- Ví dụ 4. Tìm cực trị của hàm số f(x)=x4-  2x2+  10.

Lời giải:

Hàm số đã cho xác định với mọi x

Ta có: f’(x) = 4x3 – 4x

f'(x)=0[x=0x=±1

Ta có: f”(x) = 12x2 – 4

Suy ra: f”(0) = – 4 < 0 nên x = 0 là điểm cực đại.

f”(1) = f”(– 1)  = 8 > 0 nên x = 1 và x = –1 là điểm cực tiểu.

Kết luận:

Hàm số f(x) đạt cực tiểu tại x = 1 và x = – 1; fCT = f(1) = f(–1) = 9.

Hàm số f(x) đạt cực đại tại x = 0 và fCD = f(0) = 10.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »