IMG-LOGO

Câu hỏi:

19/07/2024 38

Cho a, b, c > 0 và a.b.c = 1. Chứng minh rằng

.1a2.b+c+1b2.c+a+1c2.a+b32

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đặt x=1a;  y=1b;  z=1c , với x, y, z > 0.

Suy ra xyz=1a.1b.1c=1 .

Ta có 1a2.b+c=x21y+1z=x2yzy+z=xy+z  .

Bất đẳng thức cần chứng minh được viết lại thành: xy+z+yz+x+zx+y32 .

xy+z+1+yz+x+1+zx+y+192.

x+y+zy+z+y+z+xz+x+z+x+yx+y92.

  x+y+z1y+z+1z+x+1x+y92 (*)

Áp dụng bất đẳng thức Cauchy cho ba số x, y, z > 0, ta được:

x+y+z1y+z+1z+x+1x+y9>92.

Do đó (*) luôn đúng.

Dấu “=” xảy ra khi và chỉ khi x = y = z a = b = c.

Vậy bất đẳng thức đã cho đã được chứng minh.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O, từ điểm M ở bên ngoài đường tròn (O), kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D; O và B nằm về hai phía so với cát tuyến MCD).

a) Chứng minh tứ giác MAOB nội tiếp.

Xem đáp án » 25/03/2024 101

Câu 2:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.

Xem đáp án » 25/03/2024 75

Câu 3:

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của CHD^ .

Xem đáp án » 25/03/2024 74

Câu 4:

c) Gọi K là giao điểm của SC với mặt phẳng (AMN). Chứng minh AMKN có hai đường chéo vuông góc với nhau.

Xem đáp án » 25/03/2024 72

Câu 5:

Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là các số lẻ.

Xem đáp án » 25/03/2024 63

Câu 6:

Cho tam giác ABC vuông cân tại A. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD = AE. Qua D, A kẻ các đường thẳng vuông góc với BE cắt BC theo thứ tự tự I và K. M là giao điểm của ID và CA. Chứng minh rằng:

a) AM = AC.

Xem đáp án » 25/03/2024 62

Câu 7:

Cho tam giác ABC, trung tuyến AM. Gọi D là 1 điểm trên cạnh AC sao cho AD=13AC , BD cắt AM tại I. Chứng minh AI = IM.

Xem đáp án » 25/03/2024 53

Câu 8:

Cho phương trình x2 – 5x + 3 = 0 có hai nghiệm x1, x2. Hãy lập phương trình bậc hai có hai nghiệm là y1 = 2x1 – x2; y2 = 2x2 – x1.

Xem đáp án » 25/03/2024 44

Câu 9:

Chứng minh rằng có vô số bộ ba số tự nhiên (a, b, c) sao cho a, b, c nguyên tố cùng nhau và số n = a2b2 + b2c2 + c2a2 là số chính phương.

Xem đáp án » 25/03/2024 43

Câu 10:

Có bao nhiêu giá trị nguyên của m để hàm số y = mx4 + (m2 – 4)x2 + 2 có đúng một điểm cực đại và không có điểm cực tiểu?

Xem đáp án » 25/03/2024 41

Câu 11:

b) Chứng minh MB2 = MC.MD.

Xem đáp án » 25/03/2024 40

Câu 12:

Xác định hệ số a và b để đa thức f(x) = x4 + ax2 + b chia hết cho g(x) = x2 – 3x + 2. Tìm đa thức thương.

Xem đáp án » 25/03/2024 40

Câu 13:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD.

a) Chứng minh AM (SBC) và AN (SDC).

Xem đáp án » 25/03/2024 39

Câu 14:

Chọn khẳng định đúng:

Xem đáp án » 25/03/2024 39

Câu 15:

Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M, N theo thứ tự là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. Gọi F là giao điểm của CN và AB.

a) Chứng minh tứ giác AMCN là hình bình hành.

Xem đáp án » 25/03/2024 37

Câu hỏi mới nhất

Xem thêm »
Xem thêm »