Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

19/07/2024 37

Cho a, b, c, d > 0. Chứng minh rằng a4a3+2b3+b4b3+2c3+c4c3+2d3+d4d3+2a3a+b+c+d3

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Vì a, b, c > 0 nên a3, b3, c3 > 0.

Áp dụng bất đẳng thức Cauchy cho 3 số a3, b3, c3, ta được: a3+b3+c33a3.b3.c33 .

1a3+b3+c313a3.b3.c33.

1a3+b3+c313a3.b3.c33.

Ta có     a4a3+2b3=a2ab3a3+b3+b3a2ab33a3.b3.b33=a23b(1)

Chứng minh tương tự, ta được:

  b4b3+2c3b23c (2)

 c4c3+2d3c23d  (3)

 d4d3+2a3d23a   (4)

Lấy (1) + (2) + (3) + (4) vế theo vế, ta được:

a4a3+2b3+b4b3+2c3+c4c3+2d3+d4d3+2a3a3+b3+c3+d3=a+b+c+d3.

Vậy ta có điều phải chứng minh.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O, từ điểm M ở bên ngoài đường tròn (O), kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D; O và B nằm về hai phía so với cát tuyến MCD).

a) Chứng minh tứ giác MAOB nội tiếp.

Xem đáp án » 25/03/2024 104

Câu 2:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.

Xem đáp án » 25/03/2024 80

Câu 3:

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của CHD^ .

Xem đáp án » 25/03/2024 76

Câu 4:

c) Gọi K là giao điểm của SC với mặt phẳng (AMN). Chứng minh AMKN có hai đường chéo vuông góc với nhau.

Xem đáp án » 25/03/2024 75

Câu 5:

Cho tam giác ABC vuông cân tại A. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD = AE. Qua D, A kẻ các đường thẳng vuông góc với BE cắt BC theo thứ tự tự I và K. M là giao điểm của ID và CA. Chứng minh rằng:

a) AM = AC.

Xem đáp án » 25/03/2024 66

Câu 6:

Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là các số lẻ.

Xem đáp án » 25/03/2024 66

Câu 7:

Cho tam giác ABC, trung tuyến AM. Gọi D là 1 điểm trên cạnh AC sao cho AD=13AC , BD cắt AM tại I. Chứng minh AI = IM.

Xem đáp án » 25/03/2024 54

Câu 8:

Chứng minh rằng có vô số bộ ba số tự nhiên (a, b, c) sao cho a, b, c nguyên tố cùng nhau và số n = a2b2 + b2c2 + c2a2 là số chính phương.

Xem đáp án » 25/03/2024 45

Câu 9:

Cho phương trình x2 – 5x + 3 = 0 có hai nghiệm x1, x2. Hãy lập phương trình bậc hai có hai nghiệm là y1 = 2x1 – x2; y2 = 2x2 – x1.

Xem đáp án » 25/03/2024 44

Câu 10:

b) Chứng minh MB2 = MC.MD.

Xem đáp án » 25/03/2024 43

Câu 11:

Có bao nhiêu giá trị nguyên của m để hàm số y = mx4 + (m2 – 4)x2 + 2 có đúng một điểm cực đại và không có điểm cực tiểu?

Xem đáp án » 25/03/2024 42

Câu 12:

Xác định hệ số a và b để đa thức f(x) = x4 + ax2 + b chia hết cho g(x) = x2 – 3x + 2. Tìm đa thức thương.

Xem đáp án » 25/03/2024 41

Câu 13:

Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M, N theo thứ tự là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. Gọi F là giao điểm của CN và AB.

a) Chứng minh tứ giác AMCN là hình bình hành.

Xem đáp án » 25/03/2024 40

Câu 14:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD.

a) Chứng minh AM (SBC) và AN (SDC).

Xem đáp án » 25/03/2024 40

Câu 15:

Cho a, b, c > 0 và a.b.c = 1. Chứng minh rằng

.1a2.b+c+1b2.c+a+1c2.a+b32

Xem đáp án » 25/03/2024 39

Câu hỏi mới nhất

Xem thêm »
Xem thêm »