Thứ bảy, 14/12/2024
IMG-LOGO

Câu hỏi:

19/07/2024 33

Cho tam giác ABC (AB = AC), trung tuyến BD. Lấy điểm E sao cho C là trung điểm AE. Chứng minh rằng BE = 2BD.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC (AB = AC), trung tuyến BD. Lấy điểm E sao cho C là trung điểm AE. Chứng minh rằng BE = 2BD. (ảnh 1)

Gọi I, M lần lượt là trung điểm của AB, BC.

Xét ∆ABM và ∆ACM, có:

AM là cạnh chung;

AB = AC (giả thiết);

BM = CM (M là trung điểm BC).

Do đó ∆ABM = ∆ACM (c.c.c).

Ta có D, I lần lượt là trung điểm của AC, AB.

Suy ra AC = 2CD và AB = 2BI.

Mà AB = AC (giả thiết).

Do đó 2CD = 2BI hay CD = BI.

Xét ∆BCI và ∆CBD, có:

BC là cạnh chung;

 CBI^=BCD^(∆ABM = ∆ACM);

BI = CD (chứng minh trên).

Do đó ∆BCI = ∆CBD (c.g.c).

Suy ra CI = BD (cặp cạnh tương ứng).

Tam giác ABE có C, I lần lượt là trung điểm của AE, AB.

Suy ra CI là đường trung bình của tam giác ABE.

Do đó CI // BE và 2CI = BE.

Mà CI = BD.

Vậy BE = 2BD.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O, từ điểm M ở bên ngoài đường tròn (O), kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D; O và B nằm về hai phía so với cát tuyến MCD).

a) Chứng minh tứ giác MAOB nội tiếp.

Xem đáp án » 25/03/2024 105

Câu 2:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.

Xem đáp án » 25/03/2024 82

Câu 3:

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của CHD^ .

Xem đáp án » 25/03/2024 77

Câu 4:

c) Gọi K là giao điểm của SC với mặt phẳng (AMN). Chứng minh AMKN có hai đường chéo vuông góc với nhau.

Xem đáp án » 25/03/2024 75

Câu 5:

Cho tam giác ABC vuông cân tại A. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD = AE. Qua D, A kẻ các đường thẳng vuông góc với BE cắt BC theo thứ tự tự I và K. M là giao điểm của ID và CA. Chứng minh rằng:

a) AM = AC.

Xem đáp án » 25/03/2024 67

Câu 6:

Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là các số lẻ.

Xem đáp án » 25/03/2024 66

Câu 7:

Cho tam giác ABC, trung tuyến AM. Gọi D là 1 điểm trên cạnh AC sao cho AD=13AC , BD cắt AM tại I. Chứng minh AI = IM.

Xem đáp án » 25/03/2024 55

Câu 8:

Chứng minh rằng có vô số bộ ba số tự nhiên (a, b, c) sao cho a, b, c nguyên tố cùng nhau và số n = a2b2 + b2c2 + c2a2 là số chính phương.

Xem đáp án » 25/03/2024 45

Câu 9:

Cho phương trình x2 – 5x + 3 = 0 có hai nghiệm x1, x2. Hãy lập phương trình bậc hai có hai nghiệm là y1 = 2x1 – x2; y2 = 2x2 – x1.

Xem đáp án » 25/03/2024 45

Câu 10:

b) Chứng minh MB2 = MC.MD.

Xem đáp án » 25/03/2024 44

Câu 11:

Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M, N theo thứ tự là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. Gọi F là giao điểm của CN và AB.

a) Chứng minh tứ giác AMCN là hình bình hành.

Xem đáp án » 25/03/2024 43

Câu 12:

Có bao nhiêu giá trị nguyên của m để hàm số y = mx4 + (m2 – 4)x2 + 2 có đúng một điểm cực đại và không có điểm cực tiểu?

Xem đáp án » 25/03/2024 43

Câu 13:

Xác định hệ số a và b để đa thức f(x) = x4 + ax2 + b chia hết cho g(x) = x2 – 3x + 2. Tìm đa thức thương.

Xem đáp án » 25/03/2024 42

Câu 14:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD.

a) Chứng minh AM (SBC) và AN (SDC).

Xem đáp án » 25/03/2024 41

Câu 15:

Chọn khẳng định đúng:

Xem đáp án » 25/03/2024 40

Câu hỏi mới nhất

Xem thêm »
Xem thêm »