Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

19/07/2024 33

Tìm m để parabol (P): y = x2 – 2mx + m + 3 có đỉnh nằm trên đường thẳng (d): y = x + 2.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho S là đỉnh của parabol, khi đó:

\({x_S} = - \frac{b}{{2a}} = - \frac{{ - 2m}}{{2.1}} = m\).

\({y_S} = - \frac{\Delta }{{4a}} = - \frac{{{{\left( { - 2m} \right)}^2} - 4\left( {m + 3} \right)}}{4} = - \frac{{4{m^2} - 4m - 12}}{4} = - {m^2} + m + 3\).

Do đó \(S\left( {m; - {m^2} + m + 3} \right)\).

Để S nằm trên (d) thì –m2 + m + 3 = m + 2

Û m2 = 1 Û m = ± 1.

Vậy m = ± 1.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a) Chứng minh tam giác COD vuông tại O.

b) Chứng minh AC.BD = R2.

c) Kẻ MH vuông góc với AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

Xem đáp án » 28/03/2024 134

Câu 2:

Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).

a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.

b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.

c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).

d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.

Xem đáp án » 28/03/2024 75

Câu 3:

Cho đường tròn (O) và điểm A ngoài (O). Qua A kẻ các tiếp tuyến AB, AC với (O) trong đó B, C là các tiếp điểm. Lấy M là điểm thuộc cung nhỏ BC. Tiếp tuyến qua M với (O) cắt AB, AC lần lượt tại D và E. Chứng minh:

a) Chu vi tam giác ADE bằng 2AB.

b) \(\widehat {DOE} = \frac{1}{2}\widehat {BOC}\).

Xem đáp án » 28/03/2024 64

Câu 4:

Một lớp học có 30 học sinh gồm cả nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nữ và 1 nam là \(\frac{{52}}{{145}}\). Tính số học sinh nữ của lớp.

Xem đáp án » 29/03/2024 63

Câu 5:

Cho tứ giác ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Gọi G, G’ theo thứ tự là trọng tâm của tam giác OAB và OCD. Khi đó \(\overrightarrow {GG'} \) bằng:

Xem đáp án » 28/03/2024 49

Câu 6:

Một lớp học có 30 học sinh gồm cả nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.

Xem đáp án » 29/03/2024 47

Câu 7:

Có 8 cái bút khác nhau và 9 quyển vở khác nhau được gói trong 17 hộp. Một học sinh được chọn bất kì hai hộp. Xác suất để học sinh đó chọn được một cặp bút và vở là

Xem đáp án » 29/03/2024 46

Câu 8:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với đáy và góc tạo bởi SB với đáy (ABC) bằng 60°. Tính thể tích khối chóp S.ABC tính theo a.

Xem đáp án » 28/03/2024 44

Câu 9:

Cho tam giác ABC vuông tại B, đường trung tuyến BM, đường cao BH. Lấy E đối xứng với B qua M.

a) Chứng minh tứ giác ABCE là hình chữ nhật.

b) Qua E kẻ đường thẳng song song với AC cắt BC tại D, cắt BH tại I. Chứng minh tứ giác ACDE là hình bình hành.

c) Chứng minh EI // AM.

d) Chứng minh tứ giác AIEC là hình thang cân.

e) Tam giác ABC cần thêm điều kiện gì để ABCE là hình vuông?

Xem đáp án » 29/03/2024 41

Câu 10:

Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.

a) Chứng minh CB là tiếp tuyến của (O).

b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.

c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .

Xem đáp án » 28/03/2024 38

Câu 11:

Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.

Xem đáp án » 28/03/2024 38

Câu 12:

Cho hình thoi ABCD, có O là giao điểm của hai đường chéo AC và BD. Lấy điểm M, N lần lượt là trung điểm của cạnh AD, CD.

a) Nêu nhận xét về quan hệ bằng nhau của \(\widehat {ABD}\)\(\widehat {ADB}\). Vì sao?

b) Tứ giác AMNC là hình gì? Vì sao?

c) Chứng minh tứ giác OMDN là hình thoi.

d) Gọi E là giao điểm của đường thẳng BM với đường thẳng CD. Tính số đo \(\widehat {AED}\), biết \(\widehat {BAD} = 130^\circ \).

Xem đáp án » 29/03/2024 37

Câu 13:

Cho tam giác ABC có AB = AC. Trên hai cạnh AB và AC lần lượt lấy 2 điểm M và N sao cho AM = AN. Gọi D, E lần lượt là trung điểm của MN và BC. Chứng minh rằng: 3 điểm A, E, D thẳng hàng.

Xem đáp án » 28/03/2024 36

Câu 14:

Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.

Xem đáp án » 28/03/2024 36

Câu 15:

Trong các số thập phân 86,42; 86,422; 686,42; 86,642. Số thập phân lớn nhất là

Xem đáp án » 28/03/2024 35

Câu hỏi mới nhất

Xem thêm »
Xem thêm »