Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC.
a) Chứng minh D đối xứng với E qua A.
b) Tam giác DHE là tam giác gì? Vì sao?
c) Tứgiác BDEC là hình gì? Vì sao?
a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH suy ra AH = AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE suy ra AH = AE (2)
Từ (1) và (2) suy ra AD = AE (3)
Mặt khác \(\widehat {DAB} = \widehat {BAH}\); \(\widehat {HAC} = \widehat {CAE}\)
Và \(\widehat {BAH} + \widehat {HAC} = 90^\circ \)
Do đó \(\widehat {DAB} + \widehat {BAH} + \widehat {HAC} + \widehat {CAE} = 180^\circ \)
Tức là D, A, E thẳng hành (4)
Từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) ∆DHE có HA là trung điểm và \(HA = \frac{1}{2}DE\) nên ∆DHE vuông tại H.
c) Xét ∆ADB và ∆AHB có:
AD = AH
AB chung
DB = BH (D đối xứng với H qua AB)
Do đó ∆ADB = ∆AHB (c.c.c)
Suy ra \(\widehat {ADB} = \widehat {AHB} = 90^\circ \)
Tương tự ta có: ∆AHC = ∆AEC
Do đó \(\widehat {AEC} = \widehat {AHC} = 90^\circ \)
Suy ra BD // CE (cùng vuông góc với DE)
Nên tứ giác BAEC là hình thang có hai góc vuông kề cạnh bên DE nên BAEC là hình thang vuông.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Vẽ tiếp tuyến AB; AC với (O) (B, C là tiếp điểm).
a) Chứng minh tam giác ABC đều.
b) Đường vuông góc với OB tại O cắt AC tại D. Đường vuông góc với OC tại O cắt AB tại E. Chứng minh tứ giác ADOE là hình thoi.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua 3 điểm M,N,P có phương trình: (T) \({\left( {x - 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{25}}{4}\). Tìm phương trình đường tròn ngoại tiếp tam giác ABC.
Cho hình bình hành ABCD, có AC là đường chéo lớn. Kẻ CE vuông góc với AB tại E, BI vuông góc với AC tại I.
Chứng minh rằng:
Cho tam giác DEF vuông ở E. Tia phân giác của góc D (M thuộc EF). Từ M vẽ MH vuông góc với DF (H thuộc DF).
a) Chứng minh: ∆DEM = ∆DHM.
b) Gọi K là giao điểm của tia DE và tia MH. Tam giác KMF là tam giác gì? Vì sao?
Trong hệ tọa độ Oxy cho tam giác ABC có B(9; 7), C(11; −1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ MN.
Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C.
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh \(\widehat {CAD}\) và \(\widehat {CBD}\).
Cho tam giác ABC vuông tại A, đường cao AH, I là trung điểm của AB, lấy K đối xứng với B qua H. Qua A dựng đường thẳng song song với BC cắt HI tại D.
a) Tứ giác AKHD là hình gì?
b) Chứng minhAHBD là hình chữ nhật.
Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F .
a) Chứng minh: AE.AB = AF.AC.
b) Cho BH = 3cm, AH = 4cm. Tính AE, BE.
Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Tứ giác AKMB là hình gì?
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F.
Chứng minh rằng: , AH² = AE.AB.
Cho tam giác ABC, I là một điểm trong tam giác, IA, IB, IC theo thứ tự cắt BC, CA, AB ở M, N, P. Chứng minh rằng: \(\frac{{NA}}{{NC}} + \frac{{PA}}{{PB}} = \frac{{IA}}{{IM}}\).
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh tứ giác AMBO nội tiếp.
b) Chứng minh MA2 = MC.MD.