Lời giải
Ta có cos2x + 3sinx – 2 = 0.
⇔ –2sin2x + 3sinx – 1 = 0.
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 1\\\sin x = \frac{1}{2}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\).
⦁ Vì x ∈ (0; 20π) nên \[0 < \frac{\pi }{2} + k2\pi < 20\pi \].
\( \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{{39\pi }}{2}\).
\( \Leftrightarrow - \frac{1}{4} < k < \frac{{39}}{4}\).
Mà k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} (1)
⦁ Vì x ∈ (0; 20π) nên \[0 < \frac{\pi }{6} + k2\pi < 20\pi \].
\( \Leftrightarrow - \frac{\pi }{6} < k2\pi < \frac{{119\pi }}{6}\).
\( \Leftrightarrow - \frac{1}{{12}} < k < \frac{{119}}{{12}}\).
Mà k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} (2)
⦁ Vì x ∈ (0; 20π) nên \[0 < \frac{{5\pi }}{6} + k2\pi < 20\pi \].
\( \Leftrightarrow - \frac{{5\pi }}{6} < k2\pi < \frac{{115\pi }}{6}\).
\( \Leftrightarrow - \frac{5}{{12}} < k < \frac{{115}}{{12}}\).
Mà k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} (3)
Từ (1), (2), (3), ta thu được số nghiệm của phương trình đã cho trên khoảng (0; 20π) là 30.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.
Khẳng định nào sau đây đúng?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.
a) Chứng minh AD = BC.
b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.
c) Chứng minh OE là phân giác của \(\widehat {xOy}\).
Tính tổng sau đây:
\(C_{2021}^0 - 2.C_{2021}^1 + {2^2}.C_{2021}^2 - {2^3}.C_{2021}^3 + ... - {2^{2021}}.C_{2021}^{2021}\).
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh rằng BE = CD.
b) Chứng minh BE // CD.
c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN.
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ bên.
Khẳng định nào sau đây đúng?