Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, trung tuyến AM. Kẻ MD vuông góc với AB và Me vuông góc với AC.
a) Tứ giác ADME là hình gì? Vì sao?
b) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình vuông.
c) Tính độ dài AM?
d) Tính diện tích tam giác ABM?
Lời giải
a) Vì MD ⊥ AB, ME ⊥ AC nên \(\widehat {M{\rm{D}}A} = \widehat {ME{\rm{A}}} = 90^\circ \)
Xét tứ giác ADME có \(\widehat {BAC} = \widehat {M{\rm{D}}A} = \widehat {ME{\rm{A}}} = 90^\circ \)
Suy ra ADME là hình chữ nhật
b) Để hình chữ nhật ADME là hình vuông thì AM là tia phân giác của \(\widehat {DA{\rm{E}}}\)
Khi đó tam giác ABC có AM vừa là phân giác vừa là trung tuyến
Nên tam giác ABC cân tại A
Vậy tam giác ABC vuông cân tại A thì ADME là hình vuông
c) Vì tam giác ABC vuông tại A, theo định lý Pytago ta có
BC2 = AB2 + AC2 = 82 + 62 = 100
Suy ra BC = 10 (cm)
Do đó \(AM = \frac{1}{2}BC = \frac{1}{2}.10 = 5\) (cm)
d) Vì MD ⊥ AB, AB ⊥ AC nên MD // AC (quan hệ từ vuông góc đến song song)
Xét tam giác ABC có M là trung điểm của BC và MD // AC
Suy ra MD là đường trung bình
Do đó \(M{\rm{D}} = \frac{1}{2}AC\)
Ta có: \(\frac{{{S_{ABM}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}M{\rm{D}}.AB}}{{\frac{1}{2}AC.AB}} = \frac{{M{\rm{D}}}}{{AC}} = \frac{1}{2}\)
Mà \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.8.6 = 24\] (cm2)
Suy ra SABM = 12 cm2
Vậy SABM = 12 cm2.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.
a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Giả sử BC = 2a. Tính BM . CN.
d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2cm và OA = 4cm.
Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.
a) Chứng minh OI // BC.
b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.
c) Vẽ CH ⊥ AB (H ∈ AB) và BK ⊥ CD (K ∈ CD). Chứng minh CK2 = HA . HB.
Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất: