Thứ năm, 15/05/2025
IMG-LOGO

Câu hỏi:

17/07/2024 61

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ.

Media VietJackSố nghiệm thực của phương trình f(2 + f(ex)) = 1 là:

A. 1;

B. 2;

Đáp án chính xác

C. 4;

D. 3.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: B

Số nghiệm của phương trình f(2 + f(ex)) = 1 là số giao điểm của đồ thị hàm số y = f(2 + f(ex)) và đường thẳng y = 1

Media VietJack

Dựa vào đồ thị hàm số ta có:

\(f\left( {2 + f\left( {{e^x}} \right)} \right) = 1\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2 + f\left( {{e^x}} \right) = - 1}\\{2 + f\left( {{e^x}} \right) = {x_0} \in (2;3)}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( {{e^x}} \right) = - 3}\\{f\left( {{e^x}} \right) = {x_0} - 2 \in (0;1)}\end{array}} \right.\)

TH1: f(ex) = –3

\( \Leftrightarrow \left[ \begin{array}{l}{e^x} = 1\\{e^x} = {x_1} < - 1\end{array} \right. \Leftrightarrow x = 0\)

TH2: f(ex) = x0 – 2 (0; 1)

Suy ra phương trình có 3 nghiệm khác 0

Do đó: \(\left[ \begin{array}{l}{e^x} = a < 0\\{e^x} = b < 0\\{e^x} = c > 0\end{array} \right. \Leftrightarrow x = \ln c \ne 0\)

Vậy phương trình có 2 nghiệm phân biệt.

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hỏi có bao nhiêu cách chọn ra hai số khác nhau trong các số tự nhiên từ 1 đến 20 sao cho tích của chúng chia hết cho 9?

Xem đáp án » 02/04/2024 199

Câu 2:

Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ

Xem đáp án » 02/04/2024 143

Câu 3:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH. Chứng minh: \[{{\rm{a}}^2}\overrightarrow {IA} + {b^2}\overrightarrow {IB} + {c^2}\overrightarrow {IC} = \overrightarrow 0 \] với BC = a, AC = b và AB = c.

Xem đáp án » 02/04/2024 138

Câu 4:

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?

Xem đáp án » 02/04/2024 136

Câu 5:

Trên mặt phẳng tọa độ Oxy cho A(1; –1), B(2; 1) và C(4; 5). Ba điểm A, B, C có thẳng hàng không?

Xem đáp án » 02/04/2024 123

Câu 6:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem đáp án » 02/04/2024 120

Câu 7:

Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có đồ thị (C). Tìm tất cả các giá trị của tham số m để đường thẳng y = mx + 2 cắt (C) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O.

Xem đáp án » 02/04/2024 119

Câu 8:

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO.

c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2cm OA = 4cm.

Xem đáp án » 02/04/2024 111

Câu 9:

Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M BC), trên cạnh AC lấy điểm N sao cho AB = AN.

a) Chứng minh ∆ABM = ∆ANM.

b) Chứng minh \(\widehat {BAC} = \widehat {CMN}\).

Xem đáp án » 02/04/2024 86

Câu 10:

Một người gửi ngân hàng 100 triệu đồng với kỳ hạn 3 tháng, lãi suất 2% một quý theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm kể từ khi bắt đầu gửi tiền gần với kết quả nào sau đây:

Xem đáp án » 02/04/2024 86

Câu 11:

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân.

Xem đáp án » 02/04/2024 80

Câu 12:

Cho tam giác ABC có số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt tỉ lệ với 1, 2, 3. Tính số đo các góc của tam giác ABC? Tam giác ABC là tam giác gì? Vì sao?

Xem đáp án » 02/04/2024 78

Câu 13:

Cho tứ diện ABCD. Gọi P, Q lần lượt là trung điểm của AB, CD. Điểm R nằm trên cạnh BC sao cho BR = 2RC. Gọi S là giao điểm của mp (PQR) và AD. Khi đó:

Xem đáp án » 02/04/2024 76

Câu 14:

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:

Xem đáp án » 02/04/2024 75

Câu 15:

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần

Xem đáp án » 02/04/2024 71