Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 39

Cho a + b + c = 0; a2 + b2 + c2 = 2.

Tính giá trị của biểu thức: A = a4 + b4 + c4.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có:

a + b + c = 0

(a + b + c)2 = 0

a2 + b2 + c2 + 2ab + 2ac + 2bc = 0

1 + 2(ab + ac + bc) = 0

\[ \Rightarrow ab + ac + bc = - \frac{1}{2}\]

\[ \Rightarrow {\left( {ab + ac + bc} \right)^2} = \frac{1}{4}\]

\[ \Rightarrow {a^2}{b^2} + {\rm{ }}{a^2}{c^2} + {\rm{ }}{b^2}{c^2} + {\rm{ }}2{a^2}bc{\rm{ }} + {\rm{ }}2a{b^2}c{\rm{ }} + {\rm{ }}2ab{c^2} = \frac{1}{4}\] \[ \Rightarrow {a^2}{b^2} + {\rm{ }}{a^2}{c^2} + {\rm{ }}{b^2}{c^2} + {\rm{ }}2abc\left( {a{\rm{ }} + {\rm{ }}b{\rm{ }} + {\rm{ }}c} \right) = \frac{1}{4}\]

\[ \Rightarrow {a^2}{b^2} + {\rm{ }}{a^2}{c^2} + {\rm{ }}{b^2}{c^2} = \frac{1}{4}\]

Mà a2 + b2 + c2 = 2

(a2 + b2 + c2)2 = 4

a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2 = 4

a4 + b4 + c4 + 2 (a2b2 + a2c2 + b2c2) = 4

\[ \Rightarrow {a^4} + {\rm{ }}{b^4} + {\rm{ }}{c^4} + {\rm{ }}2.\frac{1}{4} = 4\;\]

\[ \Rightarrow A{\rm{ }} = {\rm{ }}{a^4} + {\rm{ }}{b^4} + {\rm{ }}{c^4} = \frac{7}{2}\]

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x để P2 > P biết \[P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\].

Xem đáp án » 04/04/2024 122

Câu 2:

Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB và AC theo thứ tự ở E và F.

a) Trên tia đối của tia HC, lấy điểm D sao cho HD = HC. Chứng minh rằng E là trực tâm của tam giác DBH.

b) Chứng minh rằng HE = HF.

Xem đáp án » 04/04/2024 94

Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, cạnh SA vuông góc với (ABCD) và SA = a. Tính khoảng cách SC và BD.

Xem đáp án » 04/04/2024 93

Câu 4:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.

Xem đáp án » 04/04/2024 77

Câu 5:

Chứng minh 52n−1.2n+1 + 3n+1.22n−1 chia hết cho 38.

Xem đáp án » 04/04/2024 74

Câu 6:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?

Xem đáp án » 04/04/2024 70

Câu 7:

Cho tam giác ABC vuông tại A. Vẽ ra ngoài tam giác một hình vuông BCDE. Gọi O là giao điểm hai đường chéo của hình vuông. Chứng minh AO là tia phân giác của \[\widehat {BAC}\].

Xem đáp án » 04/04/2024 61

Câu 8:

Cho tam giác ABC vuông tại A (AB > AC) có I là trung điểm BC và AH là đường cao. Chứng minh \[BC.IH = \frac{1}{2}\left( {A{B^2} - A{C^2}} \right)\].

Xem đáp án » 04/04/2024 59

Câu 9:

Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.

Xem đáp án » 04/04/2024 52

Câu 10:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của OB, OD.

a) Chứng minh ANCM là hình bình hành.

b) Qua N kẻ NK song song với OC (K thuộc CD) biết AC = 10cm. Tính NK.

Xem đáp án » 04/04/2024 52

Câu 11:

Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có chữ số 1 và 5

Xem đáp án » 04/04/2024 51

Câu 12:

Tìm tất cả các giá trị thực của tham số m để trên (−1; 1), hàm số \[y = \frac{{mx + 6}}{{2x + m + 1}}\] nghịch biến.

Xem đáp án » 04/04/2024 50

Câu 13:

Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?

Xem đáp án » 04/04/2024 49

Câu 14:

Cho tập hợp A = (‒1; 5]; B = (2; 7]. Tìm A \ B.

Xem đáp án » 04/04/2024 49

Câu 15:

Cho đa thức P(x) = x2 + bx + c, trong đó b và c là các số nguyên. Biết đa thức x4 + 6x2 + 25 và đa thức 3x4 + 4x2 + 28x + 5 đều chia hết cho P(x). Tính P(1).

Xem đáp án » 04/04/2024 45

Câu hỏi mới nhất

Xem thêm »
Xem thêm »