Tìm số thích hợp để điền vào dãy số sau: 3; 17; 59; 185; 563; …
Đáp án: 1697
Giải thích:
Xét: Hiệu giữa 3 và 17 là 14
Hiệu giữa 17 và 59 là 42 = 14.3
Hiệu giữa 59 và 185 là 126 = 42.3
Hiệu giữa 185và 563 là 378 = 126.3
⇒ Ta có quy luật hiệu của hai số sau sẽ gấp 33 lần hiệu của hai số trước (có lặp lại số ở giữa 22 số kia)
⇒ Số cần điền là: 378.3 + 563 = 1697.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm x để P2 > P biết \[P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\].
Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB và AC theo thứ tự ở E và F.
a) Trên tia đối của tia HC, lấy điểm D sao cho HD = HC. Chứng minh rằng E là trực tâm của tam giác DBH.
b) Chứng minh rằng HE = HF.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, cạnh SA vuông góc với (ABCD) và SA = a. Tính khoảng cách SC và BD.
Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?
Cho tam giác ABC vuông tại A. Vẽ ra ngoài tam giác một hình vuông BCDE. Gọi O là giao điểm hai đường chéo của hình vuông. Chứng minh AO là tia phân giác của \[\widehat {BAC}\].
Cho tam giác ABC vuông tại A (AB > AC) có I là trung điểm BC và AH là đường cao. Chứng minh \[BC.IH = \frac{1}{2}\left( {A{B^2} - A{C^2}} \right)\].
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của OB, OD.
a) Chứng minh ANCM là hình bình hành.
b) Qua N kẻ NK song song với OC (K thuộc CD) biết AC = 10cm. Tính NK.
Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.
Tìm tất cả các giá trị thực của tham số m để trên (−1; 1), hàm số \[y = \frac{{mx + 6}}{{2x + m + 1}}\] nghịch biến.
Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có chữ số 1 và 5
Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?
Cho đa thức P(x) = x2 + bx + c, trong đó b và c là các số nguyên. Biết đa thức x4 + 6x2 + 25 và đa thức 3x4 + 4x2 + 28x + 5 đều chia hết cho P(x). Tính P(1).