Chủ nhật, 15/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 42

Tìm các số nguyên dương x, y, z thỏa mãn:

2xy ‒ 1 = z(x ‒ 1)(y ‒ 1).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

2xy ‒1 = z(x ‒ 1)(y ‒ 1) = z(xy ‒ x ‒ y + 1)

2xy ‒1 = zxy ‒ zx ‒ zy + z

2xy = zxy ‒ zx ‒ zy + (z + 1)

z(x + y) = (z ‒ 2)xy + (z + 1) (*)

Trường hợp 1. z ≤ 2. Mà z ℕ* nên z = 1 hoặc z = 2

– Nếu z = 1, thay vào (*) ta được:

x + y = ‒xy + 2 x + y + xy + 1 = 3 (x + 1)(y + 1) = 3

Do x, y ℕ* nên ta có bảng sau:

x + 1

1

3

y + 1

3

1

x

0

2

y

2

0

(x; y) {(0; 2); (2; 0)}.

Þ (x; y; z) {(0; 2; 1); (2; 0; 1)}.

Nếu z = 2 2(x + y) = 3 \( \Rightarrow x + y = \frac{3}{2}\) (loại vì x, y ℕ*).

Trường hợp 2. z > 2 (z ‒ 2)xy > 0

Từ z(x + y) = (z ‒ 2)xy + (z + 1) z(x + y) > (z ‒ 2)xy

Giả sử x ≥ y 2x ≥ x + y 2xz ≥ z(x + y) > (z ‒ 2)xy

2z > (z − 2)y 2z + 2y > zy

– Nếu z ≥ y 4z ≥ 2z + 2y > zy 4 > y

Mà y ℕ* nên y {1, 2, 3}.

• Với y = 1, thay vào (*) ta được z(x + 1) = (z ‒ 2)x + (z + 1)

zx + z = zx ‒ 2x + z + 1 ‒2x + 1 = 0 (vô lý)

• Với y = 2, thay vào (*) ta được z(x + 2) = 2(z ‒ 2)x + (z + 1)

zx + 2z = 2zx – 4x + z + 1 xz – z – 4x + 1 = 0

z(x ‒ 1) ‒ 4x + 4 = 3 z(x ‒ 1) ‒ 4(x – 1) = 3

(z ‒ 4)(x ‒ 1) = 3

Do x, z ℕ* nên ta có bảng sau:

z – 4

1

3

x – 1

3

1

z

5

7

x

4

2

(x; z) {(4; 5); (2; 7)} thỏa mãn điều kiện.

Þ (x; y; z) {(4; 2; 5); (2; 2; 7)}.

• Với y = 3, thay vào (*) ta được z(x + 3) = 3(z ‒ 2)x + (z + 1)

Þ zx + 3z = 3zx – 6x + z + 1 Þ 2zx – 2z – 6x + 1 = 0

Þ 2z(x – 1) – 6(x – 1) = 5 Þ (x – 1)(2z – 6) = 5.

Mà 2z – 6 là số chẵn nên ta loại trường hợp này.

Nếu z ≤ y Þ 4y ≥ 2z + 2y > zy Þ 4 > z.

Kết hợp với z > 2 ta được 2 < z < 4

Mà z ℕ* nên z = 3

Thay z = 3, thay vào (*) ta được 3(x + y) = (3 ‒ 2)xy + (3 + 1)

Þ 3(x + y) = xy + 4 Þ 3x + 3y – xy = 4

Þ x(3 – y) – 3(3 – y) = –5 Þ (3 – y)(x – 3) = –5

Þ (x – 3)(y – 3) = 5

Do x, y ℕ* nên ta có bảng sau:

x – 3

1

5

y – 3

5

1

x

4

8

y

8

4

(x; y) {(4; 8

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x để P2 > P biết \[P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\].

Xem đáp án » 04/04/2024 122

Câu 2:

Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB và AC theo thứ tự ở E và F.

a) Trên tia đối của tia HC, lấy điểm D sao cho HD = HC. Chứng minh rằng E là trực tâm của tam giác DBH.

b) Chứng minh rằng HE = HF.

Xem đáp án » 04/04/2024 95

Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, cạnh SA vuông góc với (ABCD) và SA = a. Tính khoảng cách SC và BD.

Xem đáp án » 04/04/2024 93

Câu 4:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.

Xem đáp án » 04/04/2024 77

Câu 5:

Chứng minh 52n−1.2n+1 + 3n+1.22n−1 chia hết cho 38.

Xem đáp án » 04/04/2024 75

Câu 6:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?

Xem đáp án » 04/04/2024 73

Câu 7:

Cho tam giác ABC vuông tại A. Vẽ ra ngoài tam giác một hình vuông BCDE. Gọi O là giao điểm hai đường chéo của hình vuông. Chứng minh AO là tia phân giác của \[\widehat {BAC}\].

Xem đáp án » 04/04/2024 62

Câu 8:

Cho tam giác ABC vuông tại A (AB > AC) có I là trung điểm BC và AH là đường cao. Chứng minh \[BC.IH = \frac{1}{2}\left( {A{B^2} - A{C^2}} \right)\].

Xem đáp án » 04/04/2024 60

Câu 9:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của OB, OD.

a) Chứng minh ANCM là hình bình hành.

b) Qua N kẻ NK song song với OC (K thuộc CD) biết AC = 10cm. Tính NK.

Xem đáp án » 04/04/2024 53

Câu 10:

Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có chữ số 1 và 5

Xem đáp án » 04/04/2024 52

Câu 11:

Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.

Xem đáp án » 04/04/2024 52

Câu 12:

Tìm tất cả các giá trị thực của tham số m để trên (−1; 1), hàm số \[y = \frac{{mx + 6}}{{2x + m + 1}}\] nghịch biến.

Xem đáp án » 04/04/2024 51

Câu 13:

Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?

Xem đáp án » 04/04/2024 50

Câu 14:

Cho tập hợp A = (‒1; 5]; B = (2; 7]. Tìm A \ B.

Xem đáp án » 04/04/2024 50

Câu 15:

Cho đa thức P(x) = x2 + bx + c, trong đó b và c là các số nguyên. Biết đa thức x4 + 6x2 + 25 và đa thức 3x4 + 4x2 + 28x + 5 đều chia hết cho P(x). Tính P(1).

Xem đáp án » 04/04/2024 46

Câu hỏi mới nhất

Xem thêm »
Xem thêm »