Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I (1; 2) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 4.
A. y = −2x − 4.
B. y = −2x + 4
C. y = 2x − 4
D. y = 2x + 4
Đáp án cần chọn là: B
Đường thẳng d: y = ax + b đi qua điểm I (1; 2) ⇒ 2 = a + b (1)
Ta có d ∩ Ox = A (−; 0); d ∩ Oy = B (0; b)
Suy ra OA = và OB= (do A, B thuộc hai tia Ox, Oy).
Tam giác OAB vuông tại O.
Do đó, ta có SΔABC = OA.OB = 4 ⇒ ⇔ b2 = −8a (2)
Từ (1) suy ra b = 2 − a. Thay vào (2), ta được
(2 − a)2 = −8a ⇔ a2 − 4a + 4 = −8a ⇔ a2 + 4a + 4 = = 0 ⇔ a = −2
Với a = −2 ⇒ b = 4.
Vậy đường thẳng cần tìm là d: y = −2x + 4.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = ax + b có đồ thị là hình bên. Giá trị của a và b là:
Tìm giá trị thực của tham số m để ba đường thẳng y = −5(x + 1), y = mx + 3 và y = 3x + m phân biệt và đồng qui.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm E (2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3). Tính giá trị biểu thức S = a2 + b2.
Cho đường thẳng (d): y = –2x + 3. Tìm m để đường thẳng d′: y = mx + 1 cắt d tại một điểm thuộc đường phân giác của góc phần tư thứ hai
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2017; 2017] để hàm số y = (m2 − 4)x + 2m đồng biến trên R.
Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Đặt S(x) = f(x) + g(x) và P(x) = f(x) g(x).
Xét các mệnh đề:
i) Nếu y = f(x) và y = g(x) là những hàm số chẵn thì y = S(x) và y = P(x) cũng là những hàm số chẵn
ii) Nếu y = f(x) và y = g(x) là những hàm số lẻ thì y = S(x) là hàm số lẻ và y = P(x) là hàm số chẵn
iii) Nếu y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì y = P(x) là hàm số lẻ
Số mệnh đề đúng là:
Cho điểm A(1; 1) và hai đường thẳng (d1): y = x − 1; (d2): y = 4x − 2. Viết phương trình đường thẳng (d) đi qua điểm A và cắt các đường thẳng (d1), (d2) tạo thành một tam giác vuông.
Cho hai đường thẳng (d1): y = −3x + m + 2; (d2): y = 4x − 2m − 5. Gọi A (1; yA) thuộc (d1), B (2; yB) thuộc (d2). Tìm tất cả các giá trị của m để A và B nằm về hai phía của trục hoành.