Cho điểm A(1; 1) và hai đường thẳng (d1): y = x − 1; (d2): y = 4x − 2. Viết phương trình đường thẳng (d) đi qua điểm A và cắt các đường thẳng (d1), (d2) tạo thành một tam giác vuông.
A. y = 2x – 1
B. y = –2x + 3
C.
D. Không xác định được
Đáp án cần chọn là: C
Thấy rằng hai đường thẳng (d1), (d2) không vuông góc với nhau nên đường thẳng (d) cần xác định phải vuông góc với một trong hai đường thẳng (d1), (d2).
Gọi phương trình đường thẳng (d) có dạng y = ax + b (a ≠ 0).
TH1: Đường thẳng (d) vuông góc với (d1) suy ra a.1 = −1 ⇔ a = −1 hay (d) có dạng y = –x + b.
Thay tọa độ điểm A(1; 1) vào (d) suy ra b = 2. Khi đó, (d): y = –x + 2.
TH2: Đường thẳng (d) vuông góc với (d2) suy ra a= − hay (d) có dạng
y = −x + b
Thay tọa độ điểm A (1; 1) vào (d) suy ra b = . Khi đó, (d): y =
Vậy có hai đường thẳng thỏa mãn (d): y= −x + 2; (d): y =
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = ax + b có đồ thị là hình bên. Giá trị của a và b là:
Tìm giá trị thực của tham số m để ba đường thẳng y = −5(x + 1), y = mx + 3 và y = 3x + m phân biệt và đồng qui.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm E (2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3). Tính giá trị biểu thức S = a2 + b2.
Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I (1; 2) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 4.
Cho đường thẳng (d): y = –2x + 3. Tìm m để đường thẳng d′: y = mx + 1 cắt d tại một điểm thuộc đường phân giác của góc phần tư thứ hai
Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Đặt S(x) = f(x) + g(x) và P(x) = f(x) g(x).
Xét các mệnh đề:
i) Nếu y = f(x) và y = g(x) là những hàm số chẵn thì y = S(x) và y = P(x) cũng là những hàm số chẵn
ii) Nếu y = f(x) và y = g(x) là những hàm số lẻ thì y = S(x) là hàm số lẻ và y = P(x) là hàm số chẵn
iii) Nếu y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì y = P(x) là hàm số lẻ
Số mệnh đề đúng là:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2017; 2017] để hàm số y = (m2 − 4)x + 2m đồng biến trên R.
Cho hai đường thẳng (d1): y = −3x + m + 2; (d2): y = 4x − 2m − 5. Gọi A (1; yA) thuộc (d1), B (2; yB) thuộc (d2). Tìm tất cả các giá trị của m để A và B nằm về hai phía của trục hoành.