Tính diện tích hình phẳng giới hạn bởi các đồ thị và
A. 6
B. 12
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình phẳng (H) giới hạn bởi các đường (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
Một cổng chào có dạng hình parabol chiều cao 18m, chiều rộng chân đế 12m. Người ta căng sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi parabol thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
bằng
Cho (H) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình. Diện tích của (H) bằng?
Cho đồ thị hàm số y = f(x) như hình vẽ dưới đây. Diện tích S của hình phẳng (phần gạch chéo) được xác định bởi
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số và y = x − 4.
Cho số dương a thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol có diện tích bằng 16. Giá trị của a bằng
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào sau đây?
Người ta cần trồng hoa tại phần đắt nằm phía ngoài đường tròn tâm gốc tọa độ O, bán kính bằng và phía trong của Elip có độ dài trục lớn bằng và độ dài trục nhỏ bằng 2 (như hình vẽ bên). Trong mỗi một đơn vị diện tích cần bón kg phân hữu cơ. Hỏi cần sử dụng bao nhiêu kg phân hữu cơ để bón cho hoa?
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng x = 1, x = e
Cho (H) là hình phẳng giới hạn bởi các đồ thị hàm số và (tham khảo hình vẽ bên). Diện tích của (H) là
Gọi S là diện tích của Ban Công của một ngôi nhà có dạng như hình vẽ (S được giới hạn bởi parabol (P) và trục Ox). Giá trị của S là:
I. Tính diện tích hình phẳng
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a; b], trục hoành và hai đường thẳng x = a; x = b được xác định: .
Ví dụ 1. Tính diện tích hình phẳng được giới hạn bởi y = 5x4 + 3x2, trục hoành và hai đường thẳng x = 0; x = 1.
Lời giải:
Diện tích hình phẳng cần tính là:
2. Hình phẳng được giới hạn bởi 2 đường cong
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x); y = g(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a; x = b được xác định:
(*).
- Chú ý.
Khi áp dụng công thức (*), cần khử dấu giá trị tuyệt đối của hàm số dưới dấu tích phân. Muốn vậy ta giải phương trình: f(x) – g(x) = 0 trên đoạn [a; b].
Giả sử phương trình có hai nghiệm c; d (c < d). Khi đó, f(x) – g(x) không đổi dấu trên các đoạn [a; c]; [c; d]; [d; b]. Trên mỗi đoạn đó, chẳng hạn trên [a; c] ta có:
.
Ví dụ 2. Tính diện tích hình phẳng được giới hạn bởi các đường thẳng x = 0; x = 2 và các đồ thị của hai hàm số y = x – 1 và y = x2 – 1.
Lời giải:
Phương trình hoành độ giao điểm của hai đường cong:
x – 1 = x2 – 1
Diện tích hình phẳng đã cho là:
.
II. Tính thể tích
1. Thể tích của vật thể
Cắt một vật thể (H) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại x = a; x = b (a < b) . Một mặt phẳng tùy ý vuông góc với Ox tại điểm x cắt (H) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a; b].
Khi đó, thể tích V của phần vật thể giới hạn bởi hai mặt phẳng (P) và (Q) được xác định bởi công thức:
2. Thể tích khối chóp và khối chóp cụt.
a) Cho khối chóp có diện tích đáy là B, chiều cao h.
Khi đó, thể tích của khối chóp là
b) Cho khối chóp cụt tạo bởi khối chóp đỉnh S có diện tích hai đáy lần lượt là B; B’ và chiều cao là h.
Thể tích của khối chóp cụt là:
III. Thể tích khối tròn xoay
- Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường cong y = f(x), trục hoành và hai đường thẳng x = a; x = b quanh trục Ox:
.
Ví dụ 3. Cho hình phẳng giới hạn bởi đường cong , trục hoành và hai đường thẳng x = 0; x = 2. Tính thể tích khối tròn xoay thu được khi quay hình này quanh trục Ox.
Lời giải:
Thể tích khối tròn xoay cần tính là: