Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng . Điểm nào dưới đây thuộc (P)
A.
B.
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;-1;2), B(2;-3;-2). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB.
Cho là cặp VTCP của mặt phẳng (P). Vec tơ nào sau đây là một vec tơ pháp tuyến của (P)?
Trong không gian Oxyz, điểm nào dưới đây thuộc cả hai mặt phẳng và
Cho ba điểm . Lập phương trình mặt phẳng (MNP), biết điểm P là hình chiếu vuông góc của điểm A lên trục Ox
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng qua điểm và nhận là vec tơ pháp tuyến
Trong không gian Oxyz, cho hai mặt phẳng và . Tìm m để hai mặt phẳng và song song với nhau.
Trong không gian Oxyz, cho hai điểm A(-2;-1;3) và B(0;3;1). Gọi là mặt phẳng trung trực của AB. Một vec tơ pháp tuyến của có tọa độ là:
Trong không gian tọa độ Oxyz, cho điểm A(1;2;-1) và hai mặt phẳng , . Mặt phẳng (R) đi qua A và vuông góc với hai mặt phẳng (P), (Q) có phương trình là:
Trong không gian Oxyz, cho hai mặt phẳng , . Hai mặt phẳng (P) và (Q) song song với nhau khi m bằng:
Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1;3;-2) và song song với mặt phẳng là
Trong không gian với hệ tọa độ Oxyz, cho A(1;-3;2), B(1;0;1), C(2;3;0). Viết phương trình mặt phẳng (ABC)
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng , . Góc giữa (P) và (Q) là:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng và . Tính khoảng cách giữa (P) và (Q)
I. Vecto pháp tuyến của mặt phẳng.
1. Định nghĩa:
Cho mặt phẳng (α). Nếu vecto và có giá vuông góc với mặt phẳng (α) thì được gọi là vecto pháp tuyến của (α)
2. Chú ý. Nếu là vecto pháp tuyến của một mặt phẳng thì cũng là vecto pháp tuyến của mặt phẳng đó.
3. Tích có hướng của hai vectơ
- Định nghĩa: Trong không gian Oxyz, cho hai vectơ . Tích có hướng của hai vectơ và kí hiệu là , được xác định bởi
- Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.
Ví dụ 1. Trong không gian Oxyz, cho ba điểm A(2; 1;1); B(-1; 2; 0) và C(0; 1; -2).
Hãy tìm tọa độ của một vecto pháp tuyến của mặt phẳng (ABC).
Lời giải:
Ta có:
Một vecto pháp tuyến của mặt phẳng (ABC) là :
.
II. Phương trình tổng quát của mặt phẳng
1. Định nghĩa.
- Phương trình có dạng Ax + By + Cz + D = 0 trong đó A; B; C không đồng thời bằng 0 , được gọi là phương trình tổng quát của mặt phẳng.
- Nhận xét.
a) Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một vecto pháp tuyến là .
b) Phương trình mặt phẳng đi qua điểm M (x0; y0; z0) và nhận vectơ khác là vecto pháp tuyến là: A(x- x0 ) + B( y – y0) + C(z – z0) = 0.
Ví dụ 1. Mặt phẳng 2x – y + 3z – 10 = 0 có một vecto pháp tuyến là .
Ví dụ 2. Lập phương trình tổng quát của mặt phẳng (ABC) với A(0; 1; -2); B(2; 1; 0); C ( -2; 1; 1)
Lời giải:
Ta có:
Một vecto pháp tuyến của mặt phẳng (ABC) là
Phương trình tổng quát của mặt phẳng (ABC) là:
0(x – 0) – 10(y – 1) + 0(z + 2) = 0 hay y – 1 = 0.
2. Các trường hợp riêng
Trong không gian Oxyz, cho mặt phẳng (α) : Ax + By + Cz + D = 0.
a) Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.
b)
- Nếu thì mặt phẳng (α) song song hoặc chứa trục Ox.
- Nếu thì mặt phẳng (α) song song hoặc chứa trục Oy.
- Nếu thì mặt phẳng (α) song song hoặc chứa trục Oz.
c)
- Nếu A = B = 0; thì mặt phẳng (α) song song hoặc trùng với (Oxy).
- Nếu A = C = 0; thì mặt phẳng (α) song song hoặc trùng với (Oxz).
- Nếu B = C = 0; thì mặt phẳng (α) song song hoặc trùng với (Oyz).
- Nhận xét:
Phương trình mặt phẳng theo đoạn chắn . Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0); (0; b; 0); (0; 0; c) với .
Ví dụ 3. Trong không gian Oxyz, cho ba điểm M(2; 0; 0); N(0; 3; 0); P(0; 0; 1). Phương trình đoạn chắn của mp(MNP) là:
III. Điều kiện để hai mặt phẳng song song, vuông góc.
Trong không gian Oxyz, cho hai mặt phẳng (α) và (β) có phương trình:
(α): A1x + B1y + C1z + D1 = 0
(β): A2x + B2y + C2z + D2 = 0
Hai mặt phẳng (α); (β) có hai vecto pháp tuyến lần lượt là:
1. Điều kiện để hai mặt phẳng song song.
- Chú ý: Để (α) cắt (β) .
Ví dụ 4. Viết phương trình mặt phẳng (α) đi qua A(2; 1; 2) và song song với mặt phẳng (P): x – y + 2z – 1 = 0.
Lời giải:
Vì mp(α) song song với mặt phẳng (P): x – y + 2z – 1 = 0 nên
Mặt phẳng (α) đi qua A(2;1; 2) nên có phương trình:
1( x – 2) – 1(y – 1) + 2( z – 2) = 0 hay x – y + 2z – 5 = 0.
2. Điều kiện để hai mặt phẳng vuông góc.
Ví dụ 5. Viết phương trình mặt phẳng (P) đi qua A(1; 0; 1); B( 2; 1; -1) và vuông góc với mặt phẳng (Q): x – y + 2z – 1 = 0
Lời giải:
Ta có vecto pháp tuyến của mặt phẳng (Q) là:
Và
Vì nên
Phương trình mặt phẳng (P) là:
0(x – 1) + 4(y – 0) + 2(z – 1) = 0 hay 4y – 2z – 2 = 0
IV. Khoảng cách từ một điểm đến một mặt phẳng.
- Định lí: Trong không gian Oxyz, cho điểm M0(x0; y0; z0) và mặt phẳng (α): Ax + By + Cz + D = 0 .
Khi đó khoảng cách từ điểm M0 đến mặt phẳng (α) được tính:
.
Ví dụ 6. Tính khoảng cách từ điểm M(2; 3; 0) và N( 1; 1; 1) đến mặt phẳng (P): 2x – y + 2z + 1 = 0.
Lời giải:
Theo công thức tính khoảng cách từ một điểm đến mặt phẳng ta có:
Ví dụ 7. Tính khoảng cách giữa hai mặt phẳng song song được cho bởi phương trình: (P): x – 2y +2z + 3 = 0 và (Q): x – 2y + 2z – 7= 0.
Lời giải:
Ta biết khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.
Lấy điểm A(-3; 0; 0) thuộc mặt phẳng (P).
Ta có: .