Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

19/07/2024 346

Trong mặt phẳng Oxyz, cho mặt phẳng (P): x + y + z – 1 = 0 và mặt phẳng (Q): x – y = 0. Tìm giao tuyến của hai mặt phẳng (P) và (Q)

A. x1=y+11=z12

B. x1=y1=z12

C. x+11=y+11=z32

Đáp án chính xác

D. x1=y1=z+12

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Gọi  là giao tuyến của hai mặt phẳng (P) và (Q)

Tọa độ các giao điểm của hai mặt phẳng (P) và (Q) thỏa mãn hệ phương trình

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình đường thẳng  là giao tuyến của hai mặt phẳng α:x+2y+z1=0 và β:xyz+2=0

Xem đáp án » 04/03/2022 10,913

Câu 2:

Trong không gian Oxyz, cho mặt phẳng (P): 4y – z + 3 = 0 và hai đường thẳng Δ1:x11=y+24=z23, Δ2:x+45=y+79=z1. Đường thẳng d vuông góc với mặt phẳng (P) và cắt cả hai đường thẳng Δ1,Δ2 có phương trình là:

Xem đáp án » 04/03/2022 2,008

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1;3;2) và mặt phẳng (P): 2x – 5y + 4z – 36 = 0. Tọa độ hình chiếu H của A trên (P) là:

Xem đáp án » 04/03/2022 1,950

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(-2;1;3), C(2;-1;1), D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A, B sao cho C, D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:

Xem đáp án » 04/03/2022 1,619

Câu 5:

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng Δ:x22=y81=z1. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz)

Xem đáp án » 04/03/2022 1,305

Câu 6:

Trong không gian tọa độ Oxyz, cho d:x13=y32=z12 và mặt phẳng (P): x – 3y + z – 4 = 0. Phương trình hình chiếu của d trên (P) là:

Xem đáp án » 04/03/2022 1,115

Câu 7:

Trong không gian Oxyz, mặt phẳng đi qua điểm M(0;-1;2) và song song với hai đường thẳng d1:x+21=y12=z2 và d2:x11=y1=z32 có phương trình là:

Xem đáp án » 04/03/2022 967

Câu 8:

Trong không gian tọa độ Oxyz, phương trình đường thẳng đi qua A(1;2;4), song song với (P): 2x+y+z4=0 và cắt đường thẳng d:x23=y21=z25 có phương trình:

Xem đáp án » 04/03/2022 873

Câu 9:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α:4x+3y7z+3=0 và điểm I(0;1;1). Phương trình mặt phẳng β đối xứng với α qua I là:

Xem đáp án » 04/03/2022 615

Câu 10:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y = 0. Phương trình nào sau đây là phương trình đường thẳng qua A(-1;3;-4) cắt trục Ox và song song với mặt phẳng (P):

Xem đáp án » 04/03/2022 530

Câu 11:

Trong không gian với hệ tọa độ Oxyz, cho điểm A(4;-3;5) và B(2;-5;1). Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng d:x+13=y52=z+913

Xem đáp án » 04/03/2022 524

Câu 12:

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(3;0;0), B(0;-6;0), C(0;0;6) và mặt phẳng α:x+y+z4=0. Tọa độ hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng α là:

Xem đáp án » 04/03/2022 521

Câu 13:

Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A’B’C’ có A'3;1;1, hai đỉnh B, C thuộc trục Oz và AA’ = 1 (C không trùng với O). Biết vectơ u=a;b;2 với a,bR là một vectơ chỉ phương của đường thẳng A’C. Tính T=a2+b2

Xem đáp án » 04/03/2022 495

Câu 14:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;3;1), B(0;2;1) và mặt phẳng (P): x + y + z – 7 = 0. Đường thẳng d nằm trong (P) sao cho mọi điểm của d cách đều hai điểm A, B có phương trình là:

Xem đáp án » 04/03/2022 491

Câu 15:

Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(-2;1;3), C(2;-1;1), D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A, B sao cho C, D khác phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:

Xem đáp án » 04/03/2022 460

LÝ THUYẾT

I. Phương trình tham số của đường thẳng

-  Định lí:

Trong không gian Oxyz, cho đường thẳng ∆ đi qua điểm M0 (x0 ; y0; z0) và nhận vectơ a =(a1;a2;a3)  làm vectơ chỉ phương. Điều kiện cần và đủ để điểm M(x; y; z) nằm trên đường thẳng ∆ là có số thực t thỏa mãn: {x=x0+a1ty=y0+a2tz=z0+a2t.

- Định nghĩa:

Phương trình tham số của đường thẳng ∆ đi qua điểm M0 (x0 ; y0; z0) và nhận vectơ a =(a1;a2;a3)  làm vectơ chỉ phương là

                                              {x=x0+a1ty=y0+a2tz=z0+a2t

Trong đó, t là tham số.

- Chú ý:

Nếu a1 ; a2; a3 đều khác 0 thì ta có thể viết phương trình ∆ dưới dạng chính tắc như sau:

                                        x-x0a1=y-y0a2=z-z0a3.

Ví dụ 1. Viết phương trình tham số của đường thẳng ∆ đi qua A(1; 2;2) và có vecto chỉ phương là u(1;2;-1)

Lời giải:

Phương trình tham số của ∆ là: {x=  1+ty=2+2tz= 2-t.

Ví dụ 2. Viết phương trình tham số của đường thẳng AB với A(0;1; 2); B(2; 2; 1).

Lời giải:

Đường thẳng AB nhận AB(2;1;-1) làm vecto chỉ phương.

Phương trình tham số của AB là: {x=  2ty=1+tz= 2-t.

II. Điều kiện để hai đường thẳng song song, cắt nhau và chéo nhau.

1. Điều kiện để hai đường thẳng song song.

 Gọi a=(a1;a2;a3);a'=(a;1'a;2'a)3' lần lượt là vecto chỉ phương của d và d’.

Lấy điểm M(x0; y0; z0) trên d.

Ta có: d song song với d’ khi và chỉ khi {a=k.a'Md'.

Đặc biệt: d trùng với d’ khi và chỉ khi: {a=k.a'Md'.

Ví dụ 3.  Chứng minh hai đường thẳng sau đây song song với nhau:

d:{x=  3+2ty= 2-3tz=  2+t;d':{x=  1-4ty=  2+6tz=-2t

Lời giải:

Đường thẳng d có vecto chỉ phương u(2;-3;1) đi qua M(3; 2; 2).

Đường thẳng d’ có vecto chỉ phương là v(-4;  6;-2)

Ta thấy: v= -2u;Md'.

Do đó, hai đường thẳng trên song song với nhau.

2. Điều kiện để hai đường thẳng cắt nhau.

- Hai đường thẳng d và d’ cắt nhau khi và chỉ khi hệ phương trình ẩn t và t’ sau:

{x0+ta1=x+0't'.a1'y0+ta2=y+0't'.a2'z0+ta3=z+0't'.a3'  (I)

Có đúng một nghiệm.

- Chú ý: Giả sử hệ (I) có nghiệm (t0 ; t’0), để tìm giao điểm M0 của d và d’ ta có thể thay t0 vào phương trình tham số của d hoặc thay t’0 vào phương trình tham số của d’.

Ví dụ 4. Tìm giao điểm của hai đường thẳng:

d:{x=  3+ty= 2-tz=  2+t;d':{x=  3-t'y=  2+t'z=  3

Lời giải:

Xét hệ phương trình:

{3+t=3-t'2-t=2+t'2+t=3{t= -t't= -t't=1t=1;t'= -1

Suy ra, d cắt d’ tại điểm A(4; 1; 3).

3. Điều kiện để hai đường thẳng chéo nhau.

Hai đường thẳng d và d’ chéo nhau khi và chỉ khi a;a' không cùng phương và hệ phương trình {x0+ta1=x+0't'.a1'y0+ta2=y+0't'.a2'z0+ta3=z+0't'.a3'vô nghiệm.

Ví dụ 5. Xét vị trí tương đối của hai đường thẳng:

d:{x=  3+ty= 2-3tz=  2+t;d':{x=  1-4t'y=  2+6t'z=-2t'

Lời giải:

 

Đường thẳng d có vecto chỉ phương a(1;-3;1)

Đường thẳng d’ có vecto chỉ phương là a'(-4;  6;-2)

Ta thấy, không tồn tại số thực k để a =ka' nên hai đường thẳng d và d’ cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

{3+t= 1-4t'(1)2-3t=2+ 6t'(2)2+t=-2t'(3)   (I)

Giải hệ phương trình (1) và (2) ta được:  t =2; t’ = -1.

Thay vào (3) ta thấy không thỏa mãn nên hệ phương trình (I) vô nghiệm.

Vậy hai đường thẳng d và d’ chéo nhau.

- Nhận xét:

Trong không gian Oxyz, cho mặt phẳng (P): Ax + By + Cz + D = 0 và đường thẳng d: {x=x0+a1ty=y0+a2tz=z0+a2t.

Xét phương trình A(x0 + ta1 ) + B(y0 + ta2 ) + C (z0 + ta3 ) + D = 0 ( t là ẩn )   (1)

- Nếu phương trình (1) vô nghiệm thì d và (P) không có điểm chung.

Vậy d// (P).

- Nếu phương trình (1) có đúng một nghiệm t = t0 thì d cắt (P) tại điểm

M(x0 + t0 a1;y0 + t0 a2; z0 + t0 a3).

- Nếu phương trình (1) có vô số nghiệm thì d thuộc (P).

Ví dụ 6. Xét vị trí tương đối của đường thẳng d: x=1+2ty=-tz=-2=tvà mặt phẳng (P): 2x – y – z = 0.

Lời giải:
Lấy điểm M(1+ 2t;  -t; -2 + t) thuộc đường thẳng d.

Thay tọa độ điểm M vào phương trình (P) ta được:

2(1+ 2t) – (- t) – (-2+ t) = 0

 2 + 4t + t + 2 – t  = 0

4t + 4 = 0
t = - 1.

Suy ra đường thẳng d cắt mặt phẳng (P) tại M( -1; 1; - 3).

Câu hỏi mới nhất

Xem thêm »
Xem thêm »