Cho hình lập phương ABCD. A'B'C'D', gọi M và N lần lượt là tâm của các hình vuông ABCD và DCC'D'. Mặt phẳng (A'MN) chia khối lập phương trình hai phần có thể tích là V₁ và V₂ (V₁ < V₂). Tính tỷ số
A.
B.
C.
D. 2
Chọn D
Vậy thiết diện của hình hộp cắt bởi mặt phẳng (A'MN) là hình bình hành A'EFG.
Ta có:
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
Trong không gian Oxyz cho mặt cầu (S): (x - 1)² + (y - 2)² + (z - 3)² = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M (a; b; c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất. Khi đó:
Trong không gian Oxyz, cho tam giác ABC với A (3;0;0), B (0;6;0), C (0;0;6). Phương trình nào dưới đây là phương trình đường thẳng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC).
Trong không gian Oxyz, cho mặt cầu (S): (x -1)²+ (y + 2)² + (z - 3)² = 27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax + by - z + c = 0, khi đó a - b + c bằng:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian Oxyz cho điểm M (1;3;-2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại ba điểm phân biệt A, B, C sao cho OA = OB = OC ≠ 0.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I (1;0;-1) và cắt mặt phẳng (P): 2x+y-2z-16=0 theo giao tuyến là một đường tròn có bán kính bằng 3. Phương trình của mặt cầu (S) là:
Trong không gian Oxyz, cho mặt phẳng (P): và hai điểm A (1;-3;0), B (5;-1;-2). Điểm M (a;b;c) nằm trên (P) và |MA – MB| lớn nhất. Giá trị abc bằng:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (P): . Phương trình nào dưới đây là phương trình của đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với (d)?
Trong không gian Oxyz cho mặt phẳng (P): 5x + my + 4z + n = 0 đi qua giao tuyến của hai mặt phẳng (α): 3x - 7y + z - 3 = 0 và (β): x - 9y - 2z + 5 = 0. Tính m + n.
Trong không gian Oxyz, cho hai điểm A (1;0;0), B (0;0;2) và mặt cầu (S): x²+y²+z²-2x-2y+1=0. Hỏi có tất cả bao nhiêu mặt phẳng chứa hai điểm A, B và tiếp xúc với (S).
Cho hình hộp chữ nhật ABCD. A'B'C'D' có đáy ABCD là hình vuông cạnh a, AA'=b. Gọi M là trung điểm của cạnh CC'. Tính theo a và b thể tích V của khối tứ diện BDA'M
Trong không gian với hệ tọa độ Oxyz cho ba điểm A (3;-2;4), B (5; 3;-2), C (0;4;2), đường thẳng d cách đều ba điểm A, B, C có phương trình là:
Trong không gian Oxyz, cho hai đường thẳng chéo nhau và . Phương trình nào dưới đây là phương trình đường thẳng vuông góc chung của d và d'?
Trong không gian tọa độ Oxyz cho A (1; 1; -1), B (2; 3; 1), C (5; 5; 1). Đường phân giác trong góc A của tam giác ABC cắt mặt phẳng (Oxy) tại M (a; b; 0). Tính 3b-a.
1. Hệ tọa độ trong không gian
1.1. Tọa độ của điểm và của vecto
1.1.1. Hệ tọa độ
Trong không gian, xét ba trục tọa độ x’Ox; y’Oy; z’Oz vuông góc với nhau từng
đôi một và chung một điểm gốc O. Gọi lần lượt là các vectơ đơn vị, trên các trục x’Ox; y’Oy; z’Oz.
Hệ ba trục như vậy gọi là hệ trục tọa độ Đề- các vuông góc Oxyz trong không gian,
hay đơn giản gọi là hệ trục tọa độ Oxyz.
Điểm O được gọi là gốc tọa độ.
Các mặt phẳng (Oxy); (Oyz); (Ozx) đôi một vuong góc với nhau được gọi là các mặt phẳng tọa độ.
Không gian với hệ tọa độ Oxyz còn gọi là không gian Oxyz.
- Vì là các vecto đơn vị đôi một vuông góc với nhau nên:
.
1.1.2. Tọa độ của một điểm
- Trong không gian Oxyz, cho một điểm M tùy ý. Vì ba vecto không đồng
phẳng nên có một bộ ba số (x; y; z) duy nhất sao cho:
- Ngược lại, với bộ ba số (x; y; z) ta có một điểm M duy nhất trong không gian thỏa mãn hệ thức .
- Ta gọi bộ ba số (x; y; z) là tọa độ của điểm M đối với hệ trục tọa độ Oxyz đã cho và viết: M = ( x; y; z) hoặc M (x; y; z).
1.1.3. Tọa độ của vecto
- Trong không gian Oxyz cho vecto , khi đó luôn tồn tại duy nhất bộ ba số (a1; a2 ; a3) sao cho .
Ta gọi bộ ba số (a1; a2 ; a3) là tọa độ của vecto đối với hệ tọa độ Oxyz cho trước và viết = (a1; a2 ; a3) hoặc (a1; a2 ; a3).
- Nhận xét : Trong hệ tọa độ Oxyz, tọa độ của điểm M chính là tọa độ của vecto .
Ta có: M(x; y; z)
1.2. Biểu thức tọa độ của các phép toán của vecto
- Định lí: Trong không gian Oxyz, cho hai vecto
, ta có:
a)
b) ;
c) .
Ví dụ 1. Cho
a) Tính ;
b) ;
c) .
Lời giải:
a) ;
b) Ta có: = ( 2.4; 2. (-2); 2.0) = ( 8; - 4; 0).
c) Ta có: = ( 2 – 8; -3 + 4; 4 - 0) = (- 6; 1; 4)
- Hệ quả:
a) Cho hai vecto , ta có:
.
b) Vecto có tọa độ ( 0; 0; 0).
c) Với thì hai vecto cùng phương khi và chỉ khi tồn tại số k sao cho:
d) Cho
+
+ Toạ độ trung điểm M của đoạn thẳng AB:
Ví dụ 2. Cho . Tìm m và n để
Lời giải:
Để
Vậy m = 2 và n = 1.
Ví dụ 3. Các cặp vecto sau có cùng phương không?
a) ;
b) .
Lời giải:
a) Ta thấy
Do đó, hai vecto trên không cùng phương.
b) Ta thấy: nên hai vecto trên cùng phương.
Ví dụ 4. Cho hai điểm A( - 3; 4; 0) và B( -1; 0; 8).
a) Tính ;
b) Tìm tọa độ trung điểm M của AB.
Lời giải:
a) Ta có: = ( -1 + 3; 0 - 4; 8 -0) = ( 2; -4; 8).
b) Tọa độ trung điểm M của AB là:
1.3. Tích vô hướng.
1.3.1. Biểu thức tọa độ của tích vô hướng.
- Định lí:
Trong không gian Oxyz, tích vô hướng của hai vecto được xác định bởi công thức:
Ví dụ 5. Cho . Tính ?
Lời giải:
Ta có: = 1.1 + ( -3). 2 + 4.1 = -1
1.3.2. Ứng dụng
a) Độ dài của một vecto.
Cho vecto .
Ta biết rằng: hay . Do đó,
b) Khoảng cách giữa hai điểm.
Trong khong gian Oxyz, cho hai điểm A(xA ; yA ; zA)
và B(xB; yB ; zB). Khi đó, khoảng cách giữa hai điểm A và B chính là độ dài của
vecto . Do đó, ta có:
.
c) Góc giữa hai vecto.
Nếu là góc góc giữa hai vecto và với thì
Từ đó, suy ra
Ví dụ 6. Cho tam giác ABC có A(2; 3; 1); B( 2; 1; 0); C( 0; -1; 2).
a) Tính AB; AC
b) Tính cosin của góc A.
Lời giải:
a) Ta có:
b) Ta có:
Cosin của góc A là:
1.4. Phương trình mặt cầu
- Định lí.
Trong không gian Oxyz, mặt cầu (S) tâm I(a; b; c) bán kính r có phương trình là:
( x – a)2 + (y – b)2 + (z – c)2 = r2
- Nhận xét. Phương trình mặt cầu nói trên có thể viết dưới dạng:
x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với d = a2 + b2 + c2 – r2
Từ đó, ta chứng minh được rằng phương trình dạng:
x2 + y2 + z2 + 2Ax + 2By + 2Cz + D = 0 với điều kiện A2 + B2 + C2 – D > 0 là phương trình mặt cầu có tâm I( -A; -B; - C) có bán kính .
Ví dụ 7. Tìm tâm và bán kính của mặt cầu có phương trình sau đây:
a) x2 + y2 + z2 – 4x + 2y - 1 = 0;
b) x2 + y2 + z2 – 8x – 2y + 2z + 2 = 0
Lời giải:
a) Ta có: a = 2; b = -1; c = 0; d = -1
Tâm mặt cầu là I(2; -1; 0) và bán kính