Thứ năm, 23/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 2,272

Tìm hệ số của x12 trong khai triển 2xx210.

A. C108.

B. C10228.

Đáp án chính xác

C. C102.

D. C10228.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Theo khai triển nhị thức Niu-tơn, ta có

2xx210=k=010C10k.2x10k.x2k=k=010C10k.210k.(1)k.x10k+2k=k=010C10k.210k.(1)k.x10+k.

Hệ số của x12 ứng với 10+k=12k=2 

Hệ số cần tìm C10228.

Chọn đáp án B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm số hạng chứa x3 trong khai triển x+12x9.

Xem đáp án » 27/03/2022 24,371

Câu 2:

Tìm số nguyên dương n thỏa mãn C2n+11+C2n+12+...+C2n+1n=2201

Xem đáp án » 27/03/2022 20,698

Câu 3:

Tìm số hạng đứng giữa trong khai triển x3+xy21.

Xem đáp án » 27/03/2022 14,496

Câu 4:

Tìm số nguyên dương n thỏa mãn  C2n+11+C2n+13+...+C2n+12n+1=1024

Xem đáp án » 27/03/2022 12,052

Câu 5:

TínhS=C20110+22C20112+...+22010C20112010

Xem đáp án » 27/03/2022 2,548

Câu 6:

Tính giá trị của biểu thức

M = 22016 C20171+22014 C20173+22012 C20175++20 C20172017

Xem đáp án » 27/03/2022 1,791

Câu 7:

Tìm hệ số của x5 trong khai triển Px=x12x5+x21+3x10.

Xem đáp án » 27/03/2022 1,648

Câu 8:

Tìm số nguyên dương n sao cho: Cn0+2Cn1+4Cn2+...+2nCnn=243

Xem đáp án » 27/03/2022 1,228

Câu 9:

Trong khai triển nhị thức a+2n+6,n. Có tất cả 17 số hạng. Vậy n bằng:

Xem đáp án » 27/03/2022 646

Câu 10:

Tìm hệ số của x5 trong khai triển : Px=1+x+21+x2+...+81+x8.

Xem đáp án » 27/03/2022 319

Câu 11:

Cho khai triển  (1 + ax)(1- 3x)6, biết hệ số của số hạng chứa x3 là 405

Tìm a

Xem đáp án » 27/03/2022 283

LÝ THUYẾT

I. Công thức nhị thức Niu- tơn

Ta có:

a+ b2=a2+​ 2ab+  b2=C20a2+​ C21.a1b1  +  C22b2a-b3=a3+​ 3a2b+3ab2+b3  =  C30.a3  +C31a2b1+​  C32a1b2+​  C33b3

- Công thức nhị thức Niu – tơn.

(a​  +  b)n  =  Cn0an  +​  Cn1.an1b+​ ...+​  Cnk.ankbk ​+....+Cnn1abn1+​  Cnnbn

- Hệ quả:

Với a = b = 1 ta có: 2n  =Cn0+​ Cn1+...+​ Cnn

Với a = 1; b = – 1 ta có: 0  =Cn0​ Cn1+...+(1)k.Cnk+...+(1)n​ Cnn

- Chú ý:

Trong biểu thức ở vế phải của công thức (1):

a) Số các hạng tử là n + 1.

b) Các hạng tử có số mũ của a giảm dần từ n đến 0; số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a0=b0=1).

c) Các hệ số của mỗi cặp hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

- Ví dụ 1. Khai triển biểu thức: (a – b)^5.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Invalid <m:msup> element  =  C50a5  +​  C51.a4(b)+Invalid <m:msup> element​  C52.Invalid <m:msup> elementa3 ​+Invalid <m:msup> elementC53Invalid <m:msup> elementa2+​  C54a+C55=  a5  5a4b  +  ​10a3b210a2b3+​  5ab4b5

- Ví dụ 2. Khai triển biểu thức: (3x – 2)^4.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Invalid <m:msup> element  =Invalid <m:msup> elementC40  +Invalid <m:msup> element  C41.(2)Invalid <m:msup> elementInvalid <m:msup> element+​  C42.Invalid <m:msup> element ​+C43Invalid <m:msup> element(3x)+​  C44=  81x4216x3+  ​216x296x+16

II. Tam giác Pa- xcan

Trong công thức nhị thức Niu – tơn ở mục I, cho n = 0; 1; … và xếp các hệ số thành dòng, ta nhận được tam giác sau đây, gọi là tam giác Pa- xcan.

Bài 3: Nhị thức Niu-tơn (ảnh 1)

- Nhận xét:

Từ công thức Cnk=  Cn1k1  +  Cn1k suy ra cách tính các số ở mỗi dòng dựa vào các số ở dòng trước nó.

Ví dụ 3. C62=C51+C52=5+10=15.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »