Thứ năm, 23/01/2025
IMG-LOGO
Trang chủ Lớp 11 Toán Trắc nghiệm Toán 11 Bài 3: Nhị thức Niu-tơn (có đáp án)

Trắc nghiệm Toán 11 Bài 3: Nhị thức Niu-tơn (có đáp án)

Trắc nghiệm Toán 11 Bài 3: Nhị thức Niu-tơn (phần 2) (có đáp án)

  • 1541 lượt thi

  • 12 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Trong khai triển nhị thức a+2n+6,n. Có tất cả 17 số hạng. Vậy n bằng:

Xem đáp án

Trong khai triển a+2n+6,n có tất cả n+6 +1 = n +7 số hạng.

Do đó n+7=17n=10.

Chọn đáp án C


Câu 2:

Tìm hệ số của x12 trong khai triển 2xx210.

Xem đáp án

Theo khai triển nhị thức Niu-tơn, ta có

2xx210=k=010C10k.2x10k.x2k=k=010C10k.210k.(1)k.x10k+2k=k=010C10k.210k.(1)k.x10+k.

Hệ số của x12 ứng với 10+k=12k=2 

Hệ số cần tìm C10228.

Chọn đáp án B


Câu 3:

Tìm số hạng chứa x3 trong khai triển x+12x9.

Xem đáp án

Theo khai triển nhị thức Niu-tơn, ta có

x+12x9=k=09C9k.x9k.12xk=k=09C9k.12k.x92k.

Hệ số của x3 ứng với 92k=3k=3 

Vậy số hạng cần tìm 18C93x3. 

Chọn đáp án B.


Câu 4:

Tìm số hạng đứng giữa trong khai triển x3+xy21.

Xem đáp án

Theo khai triển nhị thức Niu-tơn, ta có

x3+xy21=k=021C21k.x321k.xyk=k=021C21k.x633k.xk.yk=k=021C21k.x632k.yk.

Suy ra khai triển x3+xy21 có 22 số hạng nên có hai số hạng đứng giữa là số hạng thứ 11 (ứng với k= 10) và số hạng thứ 12 (ứng với k =11).

Vậy hai số hạng đứng giữa cần tìm là C2110x43y10; C2111x41y11.

Chọn đáp án D.


Câu 5:

Tìm hệ số của x5 trong khai triển Px=x12x5+x21+3x10.

Xem đáp án

* Theo khai triển nhị thức Niu-tơn, ta có

x12x5=x.k=05C5k.15- k2xk=k=05C5k.2k.xk+1.

Suy ra, số hạng chứa x5 tương ứng với k+ 1=5k=4.

* Tương tự, ta có x21+3x10=x2.l=010C10l.110- l.3xl=l=010C10l.3l.xl+2.

Suy ra, số hạng chứa x5 tương ứng với l+2=5l=3.

Vậy hệ số của x5 cần tìm P(x)  là C54.24+C103.33=3320.

Chọn đáp án C.


Câu 6:

Tìm số nguyên dương n thỏa mãn C2n+11+C2n+12+...+C2n+1n=2201

Xem đáp án

Ta có 22n+1=1+12n+1=C2n+10+C2n+11+...+C2n+12n+1.         (1)

Lại có C2n+10=C2n+12n+1; C2n+11=C2n+12n; C2n+12=C2n+12n1;...; C2n+1n=C2n+1n+1.  (2)

Từ (1) và (2), suy ra C2n+10+C2n+11+...+C2n+1n=22n+12    

C2n+11+...+C2n+1n=22n+12C2n+10

C2n+11+...+C2n+1n=22n12201=22n1n=10.

Vậy n =10 thỏa mãn yêu cầu bài toán.

Chọn đáp án C.


Câu 7:

Tìm hệ số của x5 trong khai triển : Px=1+x+21+x2+...+81+x8.

Xem đáp án

Các biểu thức 1+x, 1+x2,,1+x4 không chứa số hạng chứa x5.

Hệ số của số hạng chứa x5 trong khai triển 51+x5 là 5C55.

Hệ số của số hạng chứa x5 trong khai triển 61+x6 là 6C65.

Hệ số của số hạng chứa x5 trong khai triển 71+x7 là 7C75.

Hệ số của số hạng chứa x5 trong khai triển 81+x8 là 8C85.

Vậy hệ số của x5 trong khai triển P(x) là  5C55+6C65+7C75+8C85=636.

 Chọn đáp án C.


Câu 8:

Tìm số nguyên dương n thỏa mãn  C2n+11+C2n+13+...+C2n+12n+1=1024

Xem đáp án

Xét khai triển x+12n+1=C2n+10x2n+1+C2n+11x2n+...+C2n+12n+1.

Cho x =1 , ta được 22n+1=C2n+10+C2n+11+...+C2n+12n+1.(1)

Cho x= -1, ta được 0=C2n+10+C2n+11...+C2n+12n+1. (2)

Cộng (1) và (2) vế theo vế, ta được :

22n+1=2C2n+11+C2n+13+...+C2n+12n+122n+1=2.1024=2112n+1=11n=5.

 Chọn đáp án A.


Câu 9:

Tìm số nguyên dương n sao cho: Cn0+2Cn1+4Cn2+...+2nCnn=243

Xem đáp án

Xét khai triển: (1+x)n=Cn0+xCn1+x2Cn2+...+xnCnn

Cho x= 2 ta có: Cn0+2Cn1+4Cn2+...+2nCnn=3n

Do vậy ta suy ra 3n=243=35n=5.

Chọn đáp án A


Câu 10:

TínhS=C20110+22C20112+...+22010C20112010

Xem đáp án

* Xét khai triển:

(1+x)2011=C20110+xC20111+x2C20112+...+x2010C20112010+x2011C20112011

* Cho x= 2  ta có được:

32011=C20110+2.C20111+22C20112+...+22010C20112010+22011C20112011 (1)

* Cho x= -2 ta có được:

1=C201102.C20111+22C20112...+22010C2011201022011C20112011  (2)

* Lấy (1) + (2) ta có:

2C20110+22C20112+...+22010C20112010=320111

Suy ra:S=C20110+22C20112+...+22010C20112010=3201112.

Chọn đáp án D


Câu 11:

Cho khai triển  (1 + ax)(1- 3x)6, biết hệ số của số hạng chứa x3 là 405

Tìm a

Xem đáp án

Chọn C

Ta có: 

(1 + ax). (1- 3x)6= (1- 3x)6+ax.(1-3x)6 = k= 06C6k. 16- k. (- 3x)k+ a x. k= 06C6k. 16- k. (- 3x)k= k= 06C6k. (-3) k. xk+k= 06a.C6k. (-3) k. xk+1

Do đó, hệ số của số hạng chứa x3 trong khai triển  là: 

C63. (-3)3 +a.C62. (-3)2= 405-540 + 135a = 405a =  7

Vậy a = 7


Câu 12:

Tính giá trị của biểu thức

M = 22016 C20171+22014 C20173+22012 C20175++20 C20172017

Xem đáp án

Ta có 2+12017=C20170.22017+C20171.22016+...+C20172017.20

212017=C20170.22017+C20171.22016.1+...+C20172017.20.12017

Trừ từng vế hai đẳng thức trên ta được:

320171=2C20171.22016+C20173.22014+...+C20172017.20

Vậy M=3201712

Chọn đáp án D.


Bắt đầu thi ngay