IMG-LOGO

Câu hỏi:

27/05/2024 93

Cho khối lăng trụ \(ABC.A'B'C'\), khoảng cách từ \(C\) đến \(BB'\) bằng \(2a,\) khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(CC'\) lần lượt bằng \(a\) và \(a\sqrt 3 \), hình chiếu vuông góc của \(A\) lên mặt phẳng\(\left( {A'B'C'} \right)\) là trung điểm \(M\) của \(B'C'\) và \(A'M = \frac{{2a\sqrt 3 }}{3}.\) Thể tích khối lăng trụ đã cho bằng

A.a33

B.\(\frac{{2{a^3}\sqrt 3 }}{3}\).

C.\(2{a^3}\).

Đáp án chính xác

D.\({a^3}\).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho khối lăng trụ \(ABC.A'B'C'\), khoảng cách từ \(C\) đến \(BB'\) bằng \(2a,\) khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(CC'\) lần lượt bằng \(a\) và \(a\sqrt 3 \), hình chiếu vu (ảnh 1)

Gọi \(E,F\) lần lượt là hình chiếu vuông góc của \(A\) lên \(BB',CC' \Rightarrow AE = a,AF = a\sqrt 3 .\)

Ta có \(\left\{ \begin{array}{l}BB' \bot AE\\BB' \bot AF\end{array} \right. \Rightarrow BB' \Rightarrow \left( {AEF} \right) \Rightarrow BB' \bot EF \Rightarrow EF = d\left( {C,BB'} \right) = 2a.\)

Suy ra \(\Delta AEF\) vuông tại \(A.\)

Gọi \(K = MM' \cap EF \Rightarrow K\) là trung điểm của \(EF \Rightarrow AK = \frac{1}{2}EF = a.\)

Lại có \(MM'//BB' \Rightarrow MM' \bot \left( {AEF} \right) \Rightarrow MM' \bot AK.\)

Suy ra \(\frac{1}{{A{K^2}}} = \frac{1}{{A{M^2}}} + \frac{1}{{AM{'^2}}} \Rightarrow \frac{1}{{{a^2}}} = \frac{1}{{A{M^2}}} + \frac{{3{a^2}}}{4} \Rightarrow AM = 2a.\)

Gọi \(H\) là hình chiếu vuông góc của \(A\) trên \(EF \Rightarrow AH \bot \left( {BCC'B'} \right).\)

Ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{A{F^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{2},M'{M^2} = A{M^2} + AM{'^2} = \frac{{16a}}{3} \Rightarrow MM' = \frac{{4\sqrt 3 a}}{3}.\)

Ta cũng có \({S_{BCC'B'}} = d\left( {C,BB'} \right).BB' = \frac{{8\sqrt 3 {a^2}}}{3}.\)

Suy ra \({V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCC'B'}} = \frac{3}{2}.\frac{1}{3}.AH.{S_{BCC'B'}} = 2{a^3}.\)

Đáp án C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho khối chóp \(S.ABC,\) đáy \(ABC\) là tam giác có \(AB = AC = a,\widehat {BAC} = {60^0},\widehat {SBA} = \widehat {SCA} = {90^0},\) góc giữa \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) bằng \({60^0}.\) Thể tích của khối chóp đã cho bằng:

Xem đáp án » 16/05/2022 1,043

Câu 2:

Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn: \({f^3}\left( {2 - x} \right) - 2{f^2}\left( {2 + 3x} \right) + {x^2}g\left( x \right) + 36x = 0,\forall x \in \mathbb{R}.\) Tính \(A = 3f\left( 2 \right) + 4f'\left( 2 \right).\)

Xem đáp án » 16/05/2022 541

Câu 3:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới.

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới.Tập hợp tất cả các giá trị của \(m\) để phương trình \(f\left( {\frac{1}{{\cos x}}} \right) (ảnh 1)

Tập hợp tất cả các giá trị của \(m\) để phương trình \(f\left( {\frac{1}{{\cos x}}} \right) = m\) có nghiệm thuộc khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) là?

Xem đáp án » 16/05/2022 249

Câu 4:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 16/05/2022 233

Câu 5:

Cho phương trình:

\({2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right|}}.{\log _{81}}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) + {2^{ - \left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| - 2}}.{\log _3}\left( {\frac{1}{{\left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2}}} \right) = 0\)

Gọi \(S\) là tập hợp tất cả các giá trị của \(m\) nguyên để phương trình đã cho có 6 nghiệm hoặc 7 nghiệm hoặc 8 nghiệm. Tính tổng bình phương tất cả các phần tử của tập \(S.\)

Xem đáp án » 16/05/2022 201

Câu 6:

Giá trị của tổng \(S = C_3^3 + C_4^3 + ... + C_{100}^3\) bằng

Xem đáp án » 16/05/2022 177

Câu 7:

Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ bên.

Cho hàm số \(y =  - {x^4} + 2{x^2}\) có đồ thị như hình vẽ bên.Tìm tất cả các giá trị \(m\) để phương trình \( - {x^4} + 2{x^2} = {\log _2}m\) có bốn nghiệm thực phân biệt  (ảnh 1)

Tìm tất cả các giá trị \(m\) để phương trình \( - {x^4} + 2{x^2} = {\log _2}m\) có bốn nghiệm thực phân biệt

Xem đáp án » 16/05/2022 162

Câu 8:

Cho tập \(X = \left\{ {1;2;3;...;8} \right\}\). Gọi \(A\) là tập hợp các số tự nhiên có 8 chữ số đôi một khác nhau từ \(X.\) Lấy ngẫu nhiên một số từ \(A.\) Tính xác suất để số lấy được chia hết cho 2222.

Xem đáp án » 16/05/2022 161

Câu 9:

Một hình nón có bán kính đáy bằng 5 cm và diện tích xung quanh bằng \(30\pi c{m^2}.\) Tính thể tích \(V\) của khối nón đó.

Xem đáp án » 16/05/2022 155

Câu 10:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

Xem đáp án » 16/05/2022 155

Câu 11:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 16/05/2022 151

Câu 12:

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽHàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng (ảnh 1)

Hàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng

Xem đáp án » 16/05/2022 143

Câu 13:

Tập nghiệm của bất phương trình \({\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\) là \(\left( { - \sqrt a ; - \sqrt b } \right].\)

Xem đáp án » 16/05/2022 139

Câu 14:

Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{m^3}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.

Xem đáp án » 16/05/2022 137

Câu 15:

Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y = {x^3} - 3{x^2} - mx + 4\) có hai điểm cực trị thuộc khoảng \(\left( { - 3;3} \right)?\)

Xem đáp án » 16/05/2022 131

Câu hỏi mới nhất

Xem thêm »
Xem thêm »