IMG-LOGO

Câu hỏi:

18/07/2024 828

Có bao nhiêu số nguyên a-2019;2019 để phương trình 1lnx+5+13x-1=x+a có hai nghiệm phân biệt?

A. 0

B. 2022

C. 2014

D. 2015

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

ĐKXĐ:

Ta có:

BBT:

Từ BBT suy ra phương trình (*) có 2 nghiệm 

Kết hợp ĐK: . Vậy có 2015 giá trị của a thỏa mãn

Đáp án cần chọn là: D.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hỏi có bao nhiêu giá trị m nguyên trong đoạn -2017;2017 để phương trình logmx=2logx+1 có nghiệm duy nhất?

Xem đáp án » 23/08/2022 3,547

Câu 2:

Cho 4x+4-x=7. Khi đó biểu thức P=5-2x-2-x8+4.2x+4.2-x=ab với ab tối giản và a,bZ. Tích a.b có giá trị bằng:

Xem đáp án » 23/08/2022 2,871

Câu 3:

Cho phương trình log22x-5m+1log2x+4m2+m=0. Biết phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2=165. Giá trị của x1-x2 bằng:

Xem đáp án » 23/08/2022 2,448

Câu 4:

Cho phương trình 4-x-m.log2x2-2x+3 +22x-x2.log122x-m+2=0 với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:

Xem đáp án » 23/08/2022 2,031

Câu 5:

Cho phương trình log3x.log5x=log3x+log5x. Khẳng định nào sau đây là đúng?

Xem đáp án » 23/08/2022 2,014

Câu 6:

Cho x, y là các số thực dương thỏa mãn log23x+3y+4x2+y2 =(x+y-1)(2x+2y-1)-4(xy-1). Giá trị lớn nhất của biểu thức P=5x+3y-22x+y+1 bằng:

Xem đáp án » 23/08/2022 1,572

Câu 7:

Cho a, b, c là các số thực dương khác 1 thỏa mãn loga2b+logb2c=logacb-2logbcb-3. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P=logab-logbc. Giá trị của biểu thức S=m-3M bằng:

Xem đáp án » 23/08/2022 1,484

Câu 8:

Tính tổng tất cả các nghiệm thực của phương trình log3x-2+log3(x-4)2=0

Xem đáp án » 23/08/2022 1,468

Câu 9:

Tích các nghiệm của phương trình 3+5x+3-5x=3.2x là:

Xem đáp án » 23/08/2022 1,432

Câu 10:

Tìm m để phương trình mln(1-x)-lnx=m có nghiệm x0;1

Xem đáp án » 23/08/2022 1,423

Câu 11:

Cho các số thực a, b, c thuộc khoảng 1;+ và thỏa mãn loga2b+logbc.logbc2b +9logac=4logab. Giá trị của biểu thức logab+logbc2 bằng:

Xem đáp án » 23/08/2022 1,131

Câu 12:

Cho 0x2020 và log22x+2+x-3y=8y. Có bao nhiêu cặp số (x,y) nguyên thỏa mãn các điều kiện trên?

Xem đáp án » 23/08/2022 903

Câu 13:

Biết rằng phương trình log139x2+log3x281-7=0 có hai nghiệm phân biệt x1,x2. Tính x1.x2

Xem đáp án » 23/08/2022 836

Câu 14:

Phương trình 223x3.2x-1024x2+23x3=10x2-x có tổng các nghiệm gần nhất với số nào dưới đây

Xem đáp án » 23/08/2022 809

Câu 15:

Cho các số thực không âm x, y, z thỏa mãn 5x+25y+125z=2020. Giá trị nhỏ nhất của biểu thức T=x6+y3+z2 là:

Xem đáp án » 23/08/2022 760

LÝ THUYẾT

I. Phương trình mũ

1. Phương  trình mũ cơ bản

– Phương trình mũ cơ bản có dạng: ax = b (a > 0; a ≠ 1).

Để giải phương trình trên, ta sử dụng định nghĩa logarit.

Với b > 0 ta có: ax = b x = logab.

Với b ≤ 0, phương trình vô nghiệm.

– Minh họa bằng đồ thị

Hoành độ giao điểm của đồ thị hai hàm số y = ax và y = b là nghiệm của phương trình ax = b.

Số nghiệm của phương trình là số giao điểm của hai đồ thị.

Rõ ràng, nếu b ≤ 0 thì hai đồ thị không cắt nhau nên phương trình vô nghiệm.

Nếu b > 0 ta có hai đồ thị như hình dưới đây. Trên mỗi hình, hai đồ thị luôn cắt nhau tại một điểm nên phương trình có nghiệm duy nhất.

Bài 5: Phương trình mũ và phương trình lôgarit (ảnh 1)

Kết luận:

Bài 5: Phương trình mũ và phương trình lôgarit (ảnh 1)

– Ví dụ 1. Giải phương trình 2x + 1 + 2x + 2 = 16.

Lời giải:

Ta có: 2x + 1 + 2x + 2 = 16.

2.2x + 4.2x = 16

6.2x = 16

2x=83x=log283

Vậy x=log283.

2. Cách giải một số phương trình mũ cơ bản

a) Đưa về cùng cơ số.

Ví dụ 2. Giải phương trình 3x+ 2=(13)6-2x

Lời giải:

Ta có: 3x+ 2=(13)6-2x

 x + 2 = 2x – 6

x = 8

Vậy x = 8.

b) Đặt ẩn phụ

– Ví dụ 3. Giải phương trình 4x – 5. 2x  + 6 = 0

Lời giải:

Đặt t = 2x (với t > 0)

Phương trình đã cho trở thành: t2 – 5t + 6 = 0

[t=2t=3[2x=  2x=  12x=  3x=log23

Vậy phương trình đã cho có 2 nghiệm là x = 1 và x = log23.

c) Logarit hóa.

– Ví dụ 4. Giải phương trình: 3x.  5x2=1

Lời giải:

Lấy logarit cơ số 3 hai vế ta được:

log3(3x.  5x2)=log31x+x2log35=0x(1+xlog35)=0[x=0x=-1log35=-log53

Vậy phương trình đã cho có 2 nghiệm là x = 0 và x = – log53.

II. Phương trình logarit

– Phương trình logarit là phương trình có chứa ẩn số trong biểu thức dưới dấu logarit.

– Ví dụ 5. Các phương trình logx2= 4;log32x+ 2log4x=0… đều là phương trình logarit.

1. Phương trình logarit cơ bản

– Phương trình logarit cơ bản có dạng: logax = b (a > 0; a ≠ 1).

Theo định nghĩa logarit ta có:

logax = b x  = ab

– Minh họa bằng đồ thị

Vẽ đồ thị hàm số y = loga x và đường thẳng b trên cùng một hệ tọa độ.

Bài 5: Phương trình mũ và phương trình lôgarit (ảnh 1)

Trong cả hai trường hợp, ta đều thấy đồ thị của các hàm số y = logax và đường thẳng y = b luôn cắt nhau tại một điểm với mọi bR.

Kết luận: Phương trình logax  = b (a > 0; a ≠ 1) luôn có nghiệm duy nhất x = ab với mọi b.

2. Cách giải một số phương trình logarit đơn giản.

a) Đưa về cùng cơ số

Ví dụ 6. Giải phương trình log3x + log9x = 6.

Lời giải:

Ta có: log3x + log9x = 6

log3x+12log3x=  632log3x=  6log3x=4

x = 34 = 81.

Vậy nghiệm của phương trình đã cho là x = 81.

b) Đặt ẩn phụ

– Ví dụ 7. Giải phương trình log52x+3log5x=0

Lời giải:

Đặt t =log5x, phương trình đã cho trở thành:

t2 + 3t = 0 nên t = 0 hoặc t = –3.

Với t = 0 thì log5x = 0 nên x = 1.

Với t = –3 thì log5x = –3 nên x = 5–3.

Vậy phương trình đã cho có 2 nghiệm là x = 1 và x = 5–3.

c) Mũ hóa

– Ví dụ 8. Giải phương trình: log3(90 – 3x) = x + 2

Lời giải:

Điều kiện của phương trình là 90 – 3x > 0.

Phương trình đã cho tương đương với:

90 – 3x = 3x + 2 hay 90 – 3x = 9.3x

10.3x = 90
3x = 9 nên x = 2 (thỏa mãn điều kiện)

Vậy nghiệm của phương trình đã cho là x = 2.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »