Nhắc lại các kết quả đã biết về đồ thị của hàm số y = ax2.
Đồ thị hàm số y = ax2 là một parabol:
+ Nằm phía trên trục hoành nếu a > 0 và nhận điểm O(0;0) làm điểm thấp nhất.
+ Nằm phía dưới trục hoành nếu a < 0 và nhận điểm O(0;0) làm điểm cao nhất.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó:
a) Đi qua hai điểm M(1; 5) và N(-2; 8);
b) Đi qua hai điểm A(3; -4) và có trục đối xứng là x = -3/2;
c) Có đỉnh là I(2; -2);
d) Đi qua điểm B(-1; 6) và tung độ của đỉnh là -1/4.
Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol:
a) y = x2 - 3x + 2 ; b) y = -2x2 + 4x - 3;
c) y = x2 - 2x ; d) y = -x2 + 4.
Lập bảng biến thiên và vẽ đồ thị của các hàm số:
a) y = 3x2 - 4x + 1 ; b) y = -3x2 + 2x - 1
c) y = 4x2 - 4x + 1 ; d) y = -x2 + 4x - 4
e) y = 2x2 + x + 1 ; f) y = -x2 + x - 1
Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A(8 ; 0) và có đỉnh là I(6 ; -12).