Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A(8 ; 0) và có đỉnh là I(6 ; -12).
+ Parabol y = ax2 + bx + c đi qua điểm A (8; 0)
⇒ 0 = a.82 + b.8 + c ⇒ 64a + 8b + c = 0 (1).
+ Parabol y = ax2 + bx + c có đỉnh là I (6 ; –12) suy ra:
–b/2a = 6 ⇒ b = –12a (2).
–Δ/4a = –12 ⇒ Δ = 48a ⇒ b2 – 4ac = 48a (3) .
Thay (2) vào (1) ta có: 64a – 96a + c = 0 ⇒ c = 32a.
Thay b = –12a và c = 32a vào (3) ta được:
(–12a)2 – 4a.32a = 48a
⇒ 144a2 – 128a2 = 48a
⇒ 16a2 = 48a
⇒ a = 3 (vì a ≠ 0).
Từ a = 3 ⇒ b = –36 và c = 96.
Vậy a = 3; b = –36 và c = 96.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó:
a) Đi qua hai điểm M(1; 5) và N(-2; 8);
b) Đi qua hai điểm A(3; -4) và có trục đối xứng là x = -3/2;
c) Có đỉnh là I(2; -2);
d) Đi qua điểm B(-1; 6) và tung độ của đỉnh là -1/4.
Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol:
a) y = x2 - 3x + 2 ; b) y = -2x2 + 4x - 3;
c) y = x2 - 2x ; d) y = -x2 + 4.
Lập bảng biến thiên và vẽ đồ thị của các hàm số:
a) y = 3x2 - 4x + 1 ; b) y = -3x2 + 2x - 1
c) y = 4x2 - 4x + 1 ; d) y = -x2 + 4x - 4
e) y = 2x2 + x + 1 ; f) y = -x2 + x - 1