Đồ thị hàm số dưới đây là của hàm số nào?
A.\[y = {2^{ - x}}\]
B. \[y = {\left( {\frac{1}{2}} \right)^{ - x}}\]
C. \[y = - {\left( {\frac{1}{2}} \right)^x}\]
D. \[y = - {2^x}\]
Quan sát đồ thị ta thấy nó nằm hoàn toàn phía dưới trục hoành nên loại A và B.
Lại có, đồ thị hàm số đi qua điểm (−1;−2) nên thay tọa độ điểm này vào các hàm số C và D ta được đáp án C.
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:
Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?