Gọi m là GTLN của hàm số \[f(x) = {e^{{x^3} - 3x + 3}}\;\] trên đoạn \[\left[ {0;2} \right]\]Chọn kết luận đúng:
A.\[m = e\]
B. \[m = {e^2}\]
C. \[m = {e^3}\]
D. \[m = {e^5}\]
Ta có:
\[f\prime (x) = (3{x^2} - 3){e^{{x^3} - 3x + 3}} = 0 \Leftrightarrow 3{x^2} - 3 = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 \in [0;2]}\\{x = - 1 \notin [0;2]}\end{array}} \right.\)
\[f\left( 0 \right) = {e^3};f\left( 1 \right) = e;f\left( 2 \right) = {e^5}\]nên\[\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 1 \right) = e\] và\[\mathop {\max }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 2 \right) = {e^5}\]
Vậy\[m = {e^5}\]
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:
Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?