IMG-LOGO

Câu hỏi:

22/07/2024 133

Tìm tất cả các giá trị thực của m để hàm số \[y = {2^{{x^3} - {x^2} + mx + 1}}\] đồng biến trên (1;2)

A.\[m > - 8.\]

B. \[m \ge - 1.\]

Đáp án chính xác

C. \[m \le - 8.\]

D. \[m < - 1.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có:\[y = {2^{{x^3} - {x^2} + mx + 1}} \Rightarrow y' = \left( {3{x^2} - 2x + m} \right){2^{{x^3} - {x^2} + mx + 1}}\]

⇒ Hàm số đã cho đồng biến trên\[\left( {1;\,\,2} \right) \Leftrightarrow y' \ge 0\,\,\forall x \in \left( {1;\,\,2} \right)\]

\[ \Leftrightarrow (3{x^2} - 2x + m){2^{{x^3} - x2 + mx + 1}} \ge 0\forall x \in (1;2)\]

\[ \Leftrightarrow 3{x^2} - 2x + m \ge 0\forall x \in (1;2)\]

\( \Leftrightarrow {\left[ {\begin{array}{*{20}{c}}{\Delta \prime \le 0}\\{\left\{ {\begin{array}{*{20}{c}}{\Delta \prime \ge 0}\\{\left[ {\begin{array}{*{20}{c}}{{x_1} < {x_2} \le 1}\\{2 \le {x_1} < x2}\end{array}} \right.}\end{array}} \right.}\end{array}} \right._{}} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\Delta \prime \le 0}\\{\left\{ {\begin{array}{*{20}{c}}{\Delta \prime \ge 0}\\{\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} < 2}\\{({x_1} - 1)({x_2} - 1) \ge 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} > 4}\\{({x_1} - 1)({x_2} - 1) \ge 0}\end{array}} \right.}\end{array}} \right.}\end{array}} \right.}\end{array}} \right.\)</>

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\Delta \prime \le 0}\\{\left\{ {\begin{array}{*{20}{c}}{\Delta \prime \ge 0}\\{\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} < 2}\\{{x_1}{x_2} - ({x_1} + {x_2}) + 1 \ge 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} > 4}\\{{x_1}{x_2} - ({x_1} + {x_2}) + 1 \ge 0}\end{array}} \right.}\end{array}} \right.}\end{array}} \right.}\end{array}} \right.\)</>

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{1 - 3m \le 0}\\{\left\{ {\begin{array}{*{20}{c}}{1 - 3m \ge 0}\\{\left[ {\begin{array}{*{20}{c}}{\frac{2}{3} < 2}\\{\frac{m}{3} - \frac{2}{3} + 1 \ge 0}\end{array}} \right.}\\{\left[ {\begin{array}{*{20}{c}}{\frac{x}{3} > 4(ktm)}\\{\frac{m}{3} - \frac{4}{3} + 4 \ge 0}\end{array}} \right.}\end{array}} \right.}\end{array}} \right.\)</>

\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{m \ge \frac{1}{3}}\\{\left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{\frac{m}{3} \ge - \frac{1}{3}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m \ge \frac{1}{3}}\\{\left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \ge - 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m \ge \frac{1}{3}}\\{ - 1 \le m \le \frac{1}{3}}\end{array} \Leftrightarrow m \ge - 1.} \right.\)

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[y = {3^x} + \ln 3\]. Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 299

Câu 2:

Tập xác định của hàm số \[y = {2^x}\] là:

Xem đáp án » 07/09/2022 292

Câu 3:

Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 263

Câu 4:

Chọn khẳng định đúng:

Xem đáp án » 07/09/2022 248

Câu 5:

Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 07/09/2022 235

Câu 6:

Hàm số \[y = {2^{\ln x + {x^2}}}\] có đạo hàm là

Xem đáp án » 07/09/2022 221

Câu 7:

Hàm số \[y = {a^x}(0 < a \ne 1)\] đồng biến khi nào?

Xem đáp án » 07/09/2022 177

Câu 8:

Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 177

Câu 9:

Đồ thị sau là đồ thị hàm số nào?

Xem đáp án » 07/09/2022 175

Câu 10:

Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 174

Câu 11:

Tính đạo hàm của hàm số \[y = {6^x}\]

Xem đáp án » 07/09/2022 172

Câu 12:

Cho hàm số \[y = {e^{2x}} - x\]Chọn khẳng định đúng.

Xem đáp án » 07/09/2022 169

Câu 13:

Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?

Cho hai hàm số y = a^x , y = b^x  với  1 # a , b > 0 lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng? (ảnh 1)

Xem đáp án » 07/09/2022 165

Câu 14:

Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:

Cho các đồ thị hàm số (ảnh 1)

Xem đáp án » 07/09/2022 163

Câu 15:

Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 158

Câu hỏi mới nhất

Xem thêm »
Xem thêm »