Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 98

Cho \[f\left( x \right)\] là hàm số đa thức có một phần đồ thị của hàm \[f'\left( x \right)\] như hình vẽ bên. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\]. Tìm tất cả các giá trị của tham số \[m\] để hàm số \[y = F\left( x \right) + \left( {m - 1} \right)x + 2020\] đồng biến trên khoảng \[\left( { - 1\,;\,4} \right)\].

Cho f(x) là hàm số đa thức có một phần đồ thị của hàm f'(x) như hình vẽ bên.  (ảnh 1)

A. \[m >1 - f\left( { - 1} \right)\].

B. \[m \ge 1 - f\left( { - 1} \right)\].

C. \[m \ge 1 - f\left( 4 \right)\].

Đáp án chính xác

D. \[m >1 - f\left( 4 \right)\].

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải

\[F\left( x \right)\] là một nguyên hàm của \[f\left( x \right) \Rightarrow F'\left( x \right) = f\left( x \right)\].

Hàm số \[y = F\left( x \right) + \left( {m - 1} \right)x + 2020\] đồng biến trên khoảng \[\left( { - 1\,;\,4} \right)\] khi

\[y' = F'\left( x \right) + m - 1 \ge 0\,\,\forall x \in \left( { - 1\,;\,4} \right) \Rightarrow f\left( x \right) + m - 1 \ge 0\,\,\forall x \in \left( { - 1\,;\,4} \right) \Rightarrow 1 - m \le f\left( x \right)\,\,\forall x \in \left( { - 1\,;\,4} \right)\].

Gọi \[{S_1},\,{S_2}\] lần lượt là diện tích hình phẳng giới hạn bởi đồ thị của \[f'\left( x \right)\] với trục hoành trên các đoạn \[\left[ { - 1\,;\,1} \right]\] và \[\left[ {1\,;\,4} \right]\]. Từ đồ thị \[ \Rightarrow {S_1} < {S_2}\].

Cho f(x) là hàm số đa thức có một phần đồ thị của hàm f'(x) như hình vẽ bên.  (ảnh 2)

Ta có \[f\left( 4 \right) - f\left( { - 1} \right) = \int\limits_{ - 1}^4 {f'\left( x \right){\rm{d}}x = \int\limits_{ - 1}^1 {f'\left( x \right){\rm{d}}x + \int\limits_1^4 {f'\left( x \right){\rm{d}}x} } } = {S_1} - {S_2} < 0 \Rightarrow f\left( 4 \right) < f\left( { - 1} \right)\].

Từ đó ta có bảng biến thiên sau:

Cho f(x) là hàm số đa thức có một phần đồ thị của hàm f'(x) như hình vẽ bên.  (ảnh 3)

Do \[f\left( x \right)\] là hàm đa thức nên liên tục trên \[\left[ { - 1\,;\,4} \right]\], do đó từ bảng biến thiên, ta có \[1 - m \le f\left( x \right)\,\forall x \in \left( { - 1\,;\,4} \right) \Leftrightarrow 1 - m \le f\left( 4 \right) \Rightarrow m \ge 1 - f\left( 4 \right)\].

Chọn đáp án C

</></>

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\). Từ điểm \(M\left( {2;\, - 1;\,3} \right)\) kẻ ba tiếp tuyến phân biệt \(MA,\,MB,\,MC\) đến mặt cầu (\(A,\,B,\,C\) là các tiếp điểm). Khi đó phương trình mặt phẳng \[\left( {ABC} \right)\] có dạng \[x + by + cz + d = 0\]. Giá trị \[b + c + d\] bằng

Xem đáp án » 08/09/2022 478

Câu 2:

Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau trong đó có 3 chữ số lẻ và 3 chữ số chẵn?

Xem đáp án » 08/09/2022 195

Câu 3:

Nghiệm của phương trình \[{3^{1 - 2x}} = \frac{1}{3}\]là

Xem đáp án » 08/09/2022 188

Câu 4:

Bạn muốn mua một áo sơ mi cỡ 40 hoặc 41. Áo cỡ 40 có 6 màu khác nhau, áo cỡ 41 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách chọn?

Xem đáp án » 08/09/2022 184

Câu 5:

Có bao nhiêu cặp số nguyên \(a,\,\,b\) thỏa mãn đồng thời các điều kiện \({a^2} + {b^2} >1\) và \({a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{{b^2}\left( {{a^2} + {b^2} + 4} \right) + 4{a^2}}}{{{a^2} + 2{b^2}}}} \right)\)?

Xem đáp án » 08/09/2022 180

Câu 6:

Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng

Xem đáp án » 08/09/2022 176

Câu 7:

Cho hàm số \(y = \left| {\frac{1}{{x + 3}} - \frac{1}{x} + \frac{1}{{x - 2}} - \frac{1}{{x - 5}} - m} \right|\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho có giá trị nhỏ nhất trên \(\left( { - 3\,;5} \right)\backslash \left\{ {0\,;2} \right\}\) là một số dương?

Xem đáp án » 08/09/2022 173

Câu 8:

Số phức liên hợp của số phức \(z = 2i - 1\) là:

Xem đáp án » 08/09/2022 167

Câu 9:

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = - 3\). Số số hạng thứ 4 của cấp số nhân bằng

Xem đáp án » 08/09/2022 164

Câu 10:

Cho số phức \(z = 2 + mi\,\,\left( {m \in \mathbb{R}} \right)\)thỏa \(\left( {2z - i} \right)\left( {2\overline z - 2} \right)\) là số thực. Giá trị \(\left| {2z - 3} \right|\) bằng

Xem đáp án » 08/09/2022 160

Câu 11:

Cho mặt cầu có diện tích là \(16\pi {a^2}\). Thể tích của khối cầu đã cho bằng

Xem đáp án » 08/09/2022 146

Câu 12:

Cho khối lăng trụ \[ABC.A'B'C'\] đáy là tam giác vuông cân tại \[A\]. Hình chiếu của \[A'\] lên mặt phẳng \[(ABC)\] là trung điểm \[H\] của đoạn \[AB\], khoảng cách giữa \[A'H\] và \[BC'\] bằng \[\frac{{4\sqrt 5 }}{5}\] và \[AA' = 3\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

 Cho khối lăng trụ ABC.A'B'C' đáy là tam giác vuông cân tại A. Hình chiếu của A' lên (ảnh 1)

Xem đáp án » 08/09/2022 143

Câu 13:

Tập xác định của hàm số \(y = {\log _3}\left( {4 - {x^2}} \right) + {2^{1 - 2x}}\) là

Xem đáp án » 08/09/2022 135

Câu 14:

Cho hàm số \(y = f\left( x \right)\)là hàm bậc 4 có đồ thị \[\left( C \right)\] và \[d\] là tiếp tuyến của đồ thị \[\left( C \right)\] tại 2 điểm như hình vẽ.

 Cho hàm số y=f(x) là hàm bậc 4 có đồ thị (C) và d là tiếp tuyến của đồ thị (C)  (ảnh 1)

Biết diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là \(\frac{{11}}{3}\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) bằng:

Xem đáp án » 08/09/2022 135

Câu 15:

Trong không gian \(Oxyz\), cho điểm \(A\left( {1\,;\,2;\, - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y - 2z + 5 = 0\). Đường thẳng \(d\) đi qua \(A\) và vuông góc với \(\left( P \right)\) đi qua điểm nào sau đây?

Xem đáp án » 08/09/2022 131

Câu hỏi mới nhất

Xem thêm »
Xem thêm »