IMG-LOGO

Câu hỏi:

18/07/2024 108

Cho hàm số bậc ba \(y = f(x)\) có đồ thị như hình vẽ bên. Có tất cả bao nhiêu giá trị nguyên dương của tham số \(m\) để phương trình \(\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| - {\log _2}m = 0\) có 8 nghiệm phân biệt?

Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ bên. Có tất cả bao nhiêu giá trị  (ảnh 1)

A. \(60.\)

B. \(63.\)

C. \(62.\)

D. \(61.\)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có \(\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| - {\log _2}m = 0 \Leftrightarrow \left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = {\log _2}m{\rm{ }}(*)\)

Đặt \(u = {x^3} - 3{x^2}\) có \(u' = 3{x^2} - 6x = 0 \Leftrightarrow x = 0 \vee x = 2\)

Ta lập bảng biến thiên ghép cho hàm số \(f(u)\)

Dựa bào bảng biến thiên, phương trình \((*)\) có \(8\) nghiệm phân biệt khi và chỉ khi \(1 < {\log _2}m < 6\) \( \Leftrightarrow 2 < m < 64\).

Vậy có \(61\) giá trị nguyên dương của \(m\) thỏa mãn đề bài.

Chọn đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\). Từ điểm \(M\left( {2;\, - 1;\,3} \right)\) kẻ ba tiếp tuyến phân biệt \(MA,\,MB,\,MC\) đến mặt cầu (\(A,\,B,\,C\) là các tiếp điểm). Khi đó phương trình mặt phẳng \[\left( {ABC} \right)\] có dạng \[x + by + cz + d = 0\]. Giá trị \[b + c + d\] bằng

Xem đáp án » 08/09/2022 483

Câu 2:

Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau trong đó có 3 chữ số lẻ và 3 chữ số chẵn?

Xem đáp án » 08/09/2022 201

Câu 3:

Nghiệm của phương trình \[{3^{1 - 2x}} = \frac{1}{3}\]là

Xem đáp án » 08/09/2022 191

Câu 4:

Bạn muốn mua một áo sơ mi cỡ 40 hoặc 41. Áo cỡ 40 có 6 màu khác nhau, áo cỡ 41 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách chọn?

Xem đáp án » 08/09/2022 189

Câu 5:

Có bao nhiêu cặp số nguyên \(a,\,\,b\) thỏa mãn đồng thời các điều kiện \({a^2} + {b^2} >1\) và \({a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{{b^2}\left( {{a^2} + {b^2} + 4} \right) + 4{a^2}}}{{{a^2} + 2{b^2}}}} \right)\)?

Xem đáp án » 08/09/2022 184

Câu 6:

Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng

Xem đáp án » 08/09/2022 182

Câu 7:

Cho hàm số \(y = \left| {\frac{1}{{x + 3}} - \frac{1}{x} + \frac{1}{{x - 2}} - \frac{1}{{x - 5}} - m} \right|\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho có giá trị nhỏ nhất trên \(\left( { - 3\,;5} \right)\backslash \left\{ {0\,;2} \right\}\) là một số dương?

Xem đáp án » 08/09/2022 177

Câu 8:

Số phức liên hợp của số phức \(z = 2i - 1\) là:

Xem đáp án » 08/09/2022 170

Câu 9:

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = - 3\). Số số hạng thứ 4 của cấp số nhân bằng

Xem đáp án » 08/09/2022 167

Câu 10:

Cho số phức \(z = 2 + mi\,\,\left( {m \in \mathbb{R}} \right)\)thỏa \(\left( {2z - i} \right)\left( {2\overline z - 2} \right)\) là số thực. Giá trị \(\left| {2z - 3} \right|\) bằng

Xem đáp án » 08/09/2022 164

Câu 11:

Cho mặt cầu có diện tích là \(16\pi {a^2}\). Thể tích của khối cầu đã cho bằng

Xem đáp án » 08/09/2022 156

Câu 12:

Cho khối lăng trụ \[ABC.A'B'C'\] đáy là tam giác vuông cân tại \[A\]. Hình chiếu của \[A'\] lên mặt phẳng \[(ABC)\] là trung điểm \[H\] của đoạn \[AB\], khoảng cách giữa \[A'H\] và \[BC'\] bằng \[\frac{{4\sqrt 5 }}{5}\] và \[AA' = 3\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

 Cho khối lăng trụ ABC.A'B'C' đáy là tam giác vuông cân tại A. Hình chiếu của A' lên (ảnh 1)

Xem đáp án » 08/09/2022 149

Câu 13:

Tập xác định của hàm số \(y = {\log _3}\left( {4 - {x^2}} \right) + {2^{1 - 2x}}\) là

Xem đáp án » 08/09/2022 138

Câu 14:

Cho hàm số \(y = f\left( x \right)\)là hàm bậc 4 có đồ thị \[\left( C \right)\] và \[d\] là tiếp tuyến của đồ thị \[\left( C \right)\] tại 2 điểm như hình vẽ.

 Cho hàm số y=f(x) là hàm bậc 4 có đồ thị (C) và d là tiếp tuyến của đồ thị (C)  (ảnh 1)

Biết diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là \(\frac{{11}}{3}\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) bằng:

Xem đáp án » 08/09/2022 138

Câu 15:

Cho \(a\) là một số thực dương khác 1, khi đó \({\log _a}\sqrt[3]{a}\)bằng:

Xem đáp án » 08/09/2022 135

Câu hỏi mới nhất

Xem thêm »
Xem thêm »