IMG-LOGO

Câu hỏi:

21/07/2024 110

Cho các số thực dương \(x,\,\,y\) thỏa mãn: \(3 + \left( {1 - {2^{\left| {x - 4} \right|}}} \right){.2^{\left| {y - 3} \right|}} = \left( {1 - {2^{ - \left| {y - 3} \right|}}} \right){.2^{2 - \left| {x - 4} \right|}}\) . Gọi \(M,\,\,m\) là giá trị lớn nhất và nhỏ nhất của biểu thức: \(P = {x^2} + {y^2} + 6x - 2y + 12\). Giá trị \(M.m\) bằng

A. \(1302\).

B. \(2697\).

Đáp án chính xác

C. \(4263\).

D. \(4165\).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đặt \({2^{\left| {x - 4} \right|}} = a,\,\,{2^{\left| {y - 3} \right|}} = b\,\,\,\left( {a \ge 1,\,\,b \ge 1} \right)\). Khi đó :

\(3 + \left( {1 - {2^{\left| {x - 4} \right|}}} \right){.2^{\left| {y - 3} \right|}} = \left( {1 - {2^{ - \left| {y - 3} \right|}}} \right){.2^{2 - \left| {x - 4} \right|}} \Leftrightarrow 3 + \left( {1 - a} \right)b = \left( {1 - \frac{1}{b}} \right)\frac{4}{a}\)

\( \Leftrightarrow 3ab + a{b^2} - {a^2}{b^2} = 4b - 4 \Leftrightarrow \left( {{a^2}{b^2} - 3ab - 4} \right) - \left( {a{b^2} - 4b} \right) = 0\)

\[ \Leftrightarrow \left( {ab - 4} \right)\left( {ab - b + 1} \right) = 0\].

Do \(ab - b + 1 = a\left( {b - 1} \right) + 1 >0 \Rightarrow ab = 4 \Rightarrow \left| {x - 4} \right| + \left| {y - 3} \right| = 2\)

Xét trong hệ trục tọa độ \[Oxy\], gọi \(M\left( {x\,;y} \right),\,\,I\left( { - 3;1} \right)\).

Khi đó \(P = {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + 2 = M{I^2} + 2\) và \(M\) di động trên 4 cạnh hình vuông \(ABCD,\) trong đó \(A\left( {2\,;3} \right),\,\,B\left( {4\,;1} \right),\,\,C\left( {6\,;3} \right),\,\,D\left( {4\,;5} \right)\).

Khi đó \(\left\{ \begin{array}{l}M{I_{\min }} = IA = \sqrt {29} \\M{I_{\max }} = IC = \sqrt {85} \end{array} \right. \Rightarrow \left\{ \begin{array}{l}m = {P_{\min }} = 31\\M = {P_{\max }} = 87\end{array} \right. \Rightarrow M.m = 2697\).

Chọn đáp án B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\). Từ điểm \(M\left( {2;\, - 1;\,3} \right)\) kẻ ba tiếp tuyến phân biệt \(MA,\,MB,\,MC\) đến mặt cầu (\(A,\,B,\,C\) là các tiếp điểm). Khi đó phương trình mặt phẳng \[\left( {ABC} \right)\] có dạng \[x + by + cz + d = 0\]. Giá trị \[b + c + d\] bằng

Xem đáp án » 08/09/2022 469

Câu 2:

Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau trong đó có 3 chữ số lẻ và 3 chữ số chẵn?

Xem đáp án » 08/09/2022 186

Câu 3:

Nghiệm của phương trình \[{3^{1 - 2x}} = \frac{1}{3}\]là

Xem đáp án » 08/09/2022 181

Câu 4:

Bạn muốn mua một áo sơ mi cỡ 40 hoặc 41. Áo cỡ 40 có 6 màu khác nhau, áo cỡ 41 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách chọn?

Xem đáp án » 08/09/2022 179

Câu 5:

Có bao nhiêu cặp số nguyên \(a,\,\,b\) thỏa mãn đồng thời các điều kiện \({a^2} + {b^2} >1\) và \({a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{{b^2}\left( {{a^2} + {b^2} + 4} \right) + 4{a^2}}}{{{a^2} + 2{b^2}}}} \right)\)?

Xem đáp án » 08/09/2022 174

Câu 6:

Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng

Xem đáp án » 08/09/2022 171

Câu 7:

Cho hàm số \(y = \left| {\frac{1}{{x + 3}} - \frac{1}{x} + \frac{1}{{x - 2}} - \frac{1}{{x - 5}} - m} \right|\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho có giá trị nhỏ nhất trên \(\left( { - 3\,;5} \right)\backslash \left\{ {0\,;2} \right\}\) là một số dương?

Xem đáp án » 08/09/2022 169

Câu 8:

Số phức liên hợp của số phức \(z = 2i - 1\) là:

Xem đáp án » 08/09/2022 165

Câu 9:

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = - 3\). Số số hạng thứ 4 của cấp số nhân bằng

Xem đáp án » 08/09/2022 161

Câu 10:

Cho số phức \(z = 2 + mi\,\,\left( {m \in \mathbb{R}} \right)\)thỏa \(\left( {2z - i} \right)\left( {2\overline z - 2} \right)\) là số thực. Giá trị \(\left| {2z - 3} \right|\) bằng

Xem đáp án » 08/09/2022 152

Câu 11:

Cho mặt cầu có diện tích là \(16\pi {a^2}\). Thể tích của khối cầu đã cho bằng

Xem đáp án » 08/09/2022 143

Câu 12:

Cho khối lăng trụ \[ABC.A'B'C'\] đáy là tam giác vuông cân tại \[A\]. Hình chiếu của \[A'\] lên mặt phẳng \[(ABC)\] là trung điểm \[H\] của đoạn \[AB\], khoảng cách giữa \[A'H\] và \[BC'\] bằng \[\frac{{4\sqrt 5 }}{5}\] và \[AA' = 3\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

 Cho khối lăng trụ ABC.A'B'C' đáy là tam giác vuông cân tại A. Hình chiếu của A' lên (ảnh 1)

Xem đáp án » 08/09/2022 140

Câu 13:

Tập xác định của hàm số \(y = {\log _3}\left( {4 - {x^2}} \right) + {2^{1 - 2x}}\) là

Xem đáp án » 08/09/2022 131

Câu 14:

Cho hàm số \(y = f\left( x \right)\)là hàm bậc 4 có đồ thị \[\left( C \right)\] và \[d\] là tiếp tuyến của đồ thị \[\left( C \right)\] tại 2 điểm như hình vẽ.

 Cho hàm số y=f(x) là hàm bậc 4 có đồ thị (C) và d là tiếp tuyến của đồ thị (C)  (ảnh 1)

Biết diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là \(\frac{{11}}{3}\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) bằng:

Xem đáp án » 08/09/2022 131

Câu 15:

Trong không gian \(Oxyz\), cho điểm \(A\left( {1\,;\,2;\, - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y - 2z + 5 = 0\). Đường thẳng \(d\) đi qua \(A\) và vuông góc với \(\left( P \right)\) đi qua điểm nào sau đây?

Xem đáp án » 08/09/2022 128

Câu hỏi mới nhất

Xem thêm »
Xem thêm »