Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 111

Trong không gian Oxyz, cho điểm \[A\left( {2; - 2;1} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{{ - 1}}\]. Viết phương trình đường thẳng \[\Delta \] đi qua điểm A, vuông góc và cắt đường thẳng d.


A. \[\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{4} = \frac{{z - 1}}{5}.\]                


B. \[\Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z - 1}}{4}.\]

Đáp án chính xác

C. \[\Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{4} = \frac{{z - 1}}{3}.\]           

D. \[\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{3} = \frac{{z - 1}}{4}.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Ta có d:x=1+ty=1+t3tt

Giả sử \[\Delta \] đi qua A, vuông góc và cắt d tại \[M \Rightarrow M\left( {t + 1;t - 1;3 - t} \right)\].

Đường thẳng Δ nhận AM=t1;t+1;2t là một VTCP.

Đường thẳng d có một VTCP là u=1;1;1

Ta có ΔdAM.u=0t1+t+12t=0t=23AM=13;53;43

Đường thẳng \[\Delta \] nhận AM=13;53;43 là một VTCP nên nhận u'=1;5;4 là một VTCP.

Kết hợp với \[\Delta \] qua \[A\left( {2; - 2;1} \right) \Rightarrow \Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z - 1}}{4}\].

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[y = \frac{1}{3}m{x^3} - m{x^2} + 3x + 1\]. Có bao nhiêu giá trị nguyên của tham số m để hàm số đồng biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 08/09/2022 225

Câu 2:

Cho hai số phức \[{z_1} = 3 + 2i,{z_2} = 1 - i\]. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức \[\frac{{{z_1}}}{{{z_2}}}\] có tọa độ là:

Xem đáp án » 08/09/2022 223

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{{a^3}\sqrt 3 }}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng:

Xem đáp án » 08/09/2022 218

Câu 4:

Giá trị lớn nhất của hàm số \[y = {x^4} - 2{x^2} + 5\] trên đoạn \[\left[ {0;2} \right]\] bằng:

Xem đáp án » 08/09/2022 194

Câu 5:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {e^x}\sqrt {{e^x} + 1} \].

Xem đáp án » 08/09/2022 190

Câu 6:

Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên trục Oz có tọa độ là

Xem đáp án » 08/09/2022 189

Câu 7:

Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \[y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\] trên đoạn \[\left[ {1;2} \right]\] bằng 2. Số phần tử của S là:

Xem đáp án » 08/09/2022 188

Câu 8:

Cho hàm số bậc bốn \[y = f\left( x \right)\] thỏa mãn \[f\left( 0 \right) = 7\]. Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Hàm số \[y = {\left( {f\left( x \right)} \right)^2}\] đồng biến trên khoảng nào dưới đây?

Cho hàm số bậc bốn y=f(x)  thỏa mãn f(0)=7 . Hàm số y=f'(x)  có đồ thị như hình vẽ (ảnh 1)

Xem đáp án » 08/09/2022 173

Câu 9:

Trong không gian Oxyz, cho đường thẳng d:x=2+ty=1z=32tt. Đường thẳng d đi qua điểm có tọa độ nào dưới đây?

Xem đáp án » 08/09/2022 169

Câu 10:

Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu của \[f'\left( x \right)\] như sau:

Cho hàm số y=f(X)  có bảng xét dấu của   như sau:   Bất phương trình   đúng với mọi  (ảnh 1)

Bất phương trình \[f\left( x \right) < {e^{{x^2}}} + m\] đúng với mọi \[x \in \left( { - 1;0} \right)\] khi và chỉ khi

Xem đáp án » 08/09/2022 165

Câu 11:

Có bao nhiêu số nguyên m lớn hơn \[ - 10\] để hàm số \[f\left( x \right) = \frac{{{x^3}}}{3} + m{x^2} + 3x + 5m - 1\] nghịch biến trên khoảng \[\left( {1;3} \right)\]?

Xem đáp án » 08/09/2022 163

Câu 12:

Cho khối chóp tứ giác S.ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối chóp này thành hai phần có thể tích là \[{V_1}\]\[{V_2}\left( {{V_1} < {V_2}} \right)\]. Tính tỉ số \[\frac{{{V_1}}}{{{V_2}}}\].

Xem đáp án » 08/09/2022 156

Câu 13:

Với a là số thực dương tùy ý, log28a  bằng

Xem đáp án » 08/09/2022 147

Câu 14:

Số phức \[z = 6 + 8i\] có môđun bằng:

Xem đáp án » 08/09/2022 143

Câu 15:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau:   Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho  (ảnh 1)

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Xem đáp án » 08/09/2022 141

Câu hỏi mới nhất

Xem thêm »
Xem thêm »