Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 201

Một lớp có 19 học sinh nữ và 25 học sinh nam. Bạn lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác tham gia một hoạt động của Đoàn trường. Xác suất để 4 học sinh được chọn có cả nam và nữ bằng (làm tròn đến chữ số thập phân thứ 4).

A. 0,0849.                

B. 0,8826.                 

C. 0,8783.                 

Đáp án chính xác

D. 0,0325.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Theo bài ra, bạn lớp trưởng sẽ chọn ngẫu nhiên 4 học sinh trong 19 học sinh nữ và 25 học sinh nam.

Số cách chọn 4 học sinh trong 44 học sinh của lớp là: \[C_{44}^4 = 135751\].

Số cách chọn cả 4 học sinh đều là nữ là: \[C_{19}^4\].

Số cách chọn cả 4 học sinh đều là nam là: \[C_{25}^4\].

Số cách chọn 4 học sinh trong đó có cả nam và nữ là: \[C_{44}^4 - C_{19}^4 - C_{25}^4 = 119225\] cách.

Xác suất để 4 học sinh được chọn có cả nam và nữ là: \[\frac{{119225}}{{135751}} \approx 0,8783\].

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz cho đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3\end{array} \right.\]\[{d_2}:\left\{ \begin{array}{l}x = 1\\y = 2 + 7t'\\z = 3 + t'\end{array} \right.\]. Phương trình đường phân giác của góc tù giữa \[{d_1}\]\[{d_2}\] là:

Xem đáp án » 08/09/2022 219

Câu 2:

Hệ số của số hạng chứa \[{x^7}\] trong khai triển nhị thức \[{\left( {x - \frac{2}{{x\sqrt x }}} \right)^{12}}\] (với \[x > 0\]) là:

Xem đáp án » 08/09/2022 210

Câu 3:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đạo hàm \[f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\] để hàm số \[g\left( x \right) = f\left( {1 - x} \right)\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)\]?

Xem đáp án » 08/09/2022 189

Câu 4:

Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \[{x^2} + {y^2} + {z^2} + 2\left( {m + 2} \right)x - 2\left( {m - 1} \right)z + 3{m^2} - 5 = 0\] là phương trình của một mặt cầu?

Xem đáp án » 08/09/2022 186

Câu 5:

Trong không gian Oxyz, cho \[\overrightarrow {OA} = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k \], điểm \[B\left( {3; - 4;1} \right)\] và điểm \[C\left( {2;0; - 1} \right)\]. Tọa độ trọng tâm của tam giác ABC là:

Xem đáp án » 08/09/2022 183

Câu 6:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau:  Số điểm cực tiểu của hàm số (ảnh 1)

Số điểm cực tiểu của hàm số \[g\left( x \right) = 2{f^3}\left( x \right) + 4{f^2}\left( x \right) + 1\] là:

Xem đáp án » 08/09/2022 183

Câu 7:

Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?

Xem đáp án » 08/09/2022 176

Câu 8:

Kí hiệu \[{z_1}\]\[{z_2}\] là hai nghiệm phức của phương trình \[{z^2} + z + 1 = 0\]. Tính \[P = z_1^2 + z_2^2 + {z_1}{z_2}\].

Xem đáp án » 08/09/2022 167

Câu 9:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a \[\widehat {ABC} = 60^\circ \]. Hình chiếu vuông góc của điểm S lên mặt phẳng \[\left( {ABCD} \right)\] trùng với trọng tâm tam giác ABC. Gọi \[\varphi \] là góc giữa đường thẳng SB với mặt phẳng \[\left( {SCD} \right)\], tính \[\sin \varphi \] biết rằng \[SB = a\].

Xem đáp án » 08/09/2022 166

Câu 10:

Cho a là số thực dương khác 5. Tính \[I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right)\].

Xem đáp án » 08/09/2022 145

Câu 11:

Cho khối lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E, F lần lượt là trung điểm của C’B’C’D’. Mặt phẳng \[\left( {AEF} \right)\] cắt khối lập phương đã cho thành hai phần, gọi \[{V_1}\] là thể tích khối chứa điểm A’\[{V_2}\] là thể tích khối chứa điểm C’. Khi đó \[\frac{{{V_1}}}{{{V_2}}}\] là:

Xem đáp án » 08/09/2022 138

Câu 12:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đồ thị như hình vẽ. Tổng tất cả các giá trị nguyên của tham số m để bất phương trình \[{9.6^{f\left( x \right)}} + \left( {4 - {f^2}\left( x \right)} \right){.9^{f\left( x \right)}} \le \left( { - {m^2} + 5m} \right){.4^{f\left( x \right)}}\] đúng \[\forall x \in \mathbb{R}\] là:

Cho hàm số y=f(x)  liên tục trên R  và có đồ thị như hình vẽ. Tổng tất cả các giá  (ảnh 1)

Xem đáp án » 08/09/2022 137

Câu 13:

Cho hàm số \[y = f\left( x \right)\] liên tục và có đạo hàm trên \[\mathbb{R}\] thỏa mãn \[f\left( 2 \right) = - 2;\int\limits_0^2 {f\left( x \right)dx} = 1\]. Tính tích phân \[I = \int\limits_{ - 1}^3 {f'\left( {\sqrt {x + 1} } \right)dx} \].

Xem đáp án » 08/09/2022 135

Câu 14:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):2x - 4y + 6z - 1 = 0\]. Mặt phẳng \[\left( P \right)\] có một vectơ pháp tuyến là:

Xem đáp án » 08/09/2022 134

Câu 15:

Có bao nhiêu cặp số thực \[\left( {x;y} \right)\] thỏa mãn đồng thời hai điều kiện sau: \[{7^{\left| {{x^2} - 4x - 5} \right| - {{\log }_7}5}} = {5^{ - \left( {y + 2} \right)}}\]\[2\left| {y - 2} \right| - \left| y \right| + {y^2} - y \le 7\]?

Xem đáp án » 08/09/2022 132

Câu hỏi mới nhất

Xem thêm »
Xem thêm »