Cho hàm số . Trong các mệnh đề sau, mệnh đề nào sai?
B. Đồ thị hàm số có tiệm cận ngang là: .
C. Hàm số gián đoạn tại .
D. Hàm số đồng biến trên tập xác định của nó.
Đáp án D
Điều kiện xác định .
Ta có
Do đó hàm số đồng biến trên hai khoảng và .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AB=BC=1 , AD=2 . Các mặt chéo (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD) . Biết góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 60 độ (tham khảo hình vẽ bên). Khoảng cách từ điểm D đến mặt phẳng (SAB) là
Cho 3 số phức thỏa mãn , , . Tính giá trị nhỏ nhất của biểu thức .
Cho là các hàm số có đạo hàm liên tục trên R, số và C là một hằng số tùy ý. Xét 4 mệnh đề sau
(I):
(II):
(III):
(IV):
Số mệnh đề đúng là
Trong không gian Oxzyz, cho hai điểm và mặt phẳng . Mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P) có phương trình là
Gọi A, B lần lượt 2 điểm biểu diễn số phức trong mặt phẳng phức ở hình vẽ bên. Tính .