Phương trình có tất cả bao nhiêu nghiệm thực phân biệt
Đáp án B
Ta có
Đặt với mỗi có 1 và chỉ 1 giá trị .
Đồ thị hàm số cũng là đồ thị của hàm số .
Số nghiệm của phương trình (2) là số hoành độ giao điểm của đồ thị hàm số với đường thẳng y=3. Có 3 giao điểm nên phương trình (2) có 3 nghiệm phân biệt.
Số nghiệm của phương trình (3) là số hoành độ giao điểm của đồ thị hàm số với đường thẳng . Có 1 giao điểm nên phương trình (3) có đúng 1 nghiệm.
Nghiệm của phương trình (3) không trùng với nghiệm của phương trình (2)
Vậy phương trình có 4 nghiệm phân biệtGói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AB=BC=1 , AD=2 . Các mặt chéo (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD) . Biết góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 60 độ (tham khảo hình vẽ bên). Khoảng cách từ điểm D đến mặt phẳng (SAB) là
Cho 3 số phức thỏa mãn , , . Tính giá trị nhỏ nhất của biểu thức .
Cho là các hàm số có đạo hàm liên tục trên R, số và C là một hằng số tùy ý. Xét 4 mệnh đề sau
(I):
(II):
(III):
(IV):
Số mệnh đề đúng là
Trong không gian Oxzyz, cho hai điểm và mặt phẳng . Mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P) có phương trình là
Gọi A, B lần lượt 2 điểm biểu diễn số phức trong mặt phẳng phức ở hình vẽ bên. Tính .