Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
A. (d) có hệ số góc k = 1/2;
B. (d) cắt (d’): x – 2y = 0;
C. (d) đi qua A(1; –2);
D. (d) có phương trình tham số: .
Đáp án đúng là: A
• (d): x – 2y + 5 = 0 ⇔ 2y = x + 5 ⇔
Do đó (d) có hệ số góc
Vì vậy phương án A đúng.
• (d) và (d’) có vectơ pháp tuyến lần lượt là .
Ta có
Do đó (d) và (d’) song song hoặc trùng nhau.
Vì vậy phương án B sai.
• Thay tọa độ A(1; –2) vào phương trình (d), ta được:
1 – 2.(–2) + 5 = 10 ≠ 0.
Suy ra A(1; –2) không thuộc (d) hay (d) không đi qua A(1; –2).
Do đó phương án C sai.
• (d) có vectơ pháp tuyến .
Suy ra (d) có vectơ chỉ phương .
Ở phương án D, ta có vectơ chỉ phương .
Ta có: 2.(–2) – 1.1 = –5 ≠ 0.
Suy ra không cùng phương với .
Do đó phương trình tham số ở đáp án D không phải là phương trình tham số của (d).
Vì vậy phương án D sai.
Vậy ta chọn phương án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một gương có mặt cắt là một hypebol có phương trình được dùng để chụp ảnh toàn cảnh. Máy ảnh hướng về phía đỉnh của gương và được đặt ở vị trí sao cho ống kính trùng với một tiêu điểm của gương như hình vẽ.
Biết rằng x, y được đo theo inch. Khoảng cách từ ống kính tới đỉnh gương bằng khoảng:
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
Một anten gương đơn hình parabol có phương trình y2 = 20x. Ống thu của anten được đặt tại tiêu điểm của nó. Ta sẽ đặt ống thu tại điểm có tọa độ là:
Cho M(x; y) nằm trên elip (E): . Tỉ số giữa tiêu cự và độ dài trục lớn bằng:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Đường tròn (C) có tâm I(–2; 3) và đi qua điểm M(2; –3) có phương trình là:
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:
Trong mặt phẳng Oxy, cho hai điểm A(2; 4) và B(–2; 10). Giá trị k để điểm D(k; k + 1) thuộc đường thẳng AB là:
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là: