Chủ nhật, 25/05/2025
IMG-LOGO

Câu hỏi:

27/06/2024 214

Cho hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Xét tính đơn điệu của hàm số.

b) Chứng minh rằng với mọi m, tiệm cận ngang của đồ thị (Cm) của hàm số đã cho luôn đi qua điểm Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Biện luận theo m số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất.

d) Vẽ đồ thị của hàm số: Giải sách bài tập Toán 12 | Giải sbt Toán 12

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Xét hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) TXĐ: R \ {−3m/2}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

+) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng Giải sách bài tập Toán 12 | Giải sbt Toán 12

 

+) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4

b) Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên với mọi m, đường thẳng y = -12 là tiệm cận ngang và đi qua Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ 2x2 + (3m + 1)x – 4 = 0 ⇔ 2x2 + (3m + 1) x – 4 = 0 với x ≠ −3m/2

    +) Thay x = −3m/2 vào (*), ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m ≠ −8/3.

Ta có: Δ = (3m + 1)2 + 32 > 0, ∀ m. Từ đó suy ra với m ≠−8/3 đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.

d) Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trước hết, ta vẽ đồ thị (C) của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

TXĐ: D = R \ {−3/2}.

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với mọi nên hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận đứng x = −32

Tiệm cận ngang y = −12

Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = 2x4 − 4x2 (1)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).

b) Với giá trị nào của m, phương trình x2|x2 − 2| = m có đúng 6 nghiệm thực phân biệt?

(Đề thi đại học năm 2009; khối B)

Xem đáp án » 26/12/2021 1,889

Câu 2:

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

y = −x3 + 3x + 1

b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:

y = (x + 1)3 − 3x − 4

c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:

(x + 1)3 = 3x + m

d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 

Xem đáp án » 26/12/2021 958

Câu 3:

Cho hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến của (C) tại các giao điểm của nó với trục Ox.

c) Biện luận theo k số giao điểm của (C) với đồ thị (P) của hàm số: y = k – 2x2.

Xem đáp án » 26/12/2021 949

Câu 4:

Phương trình tiếp tuyến của đồ thị hàm số y = x4 - 2x2 - 3 song song với đường thẳng y = 24x - 1 là:

Xem đáp án » 27/12/2021 545

Câu 5:

Phương trình tiếp tuyến của đồ thị hàm số y = x4 - 2x2 tại điểm có hoành độ x = -2 là:

Xem đáp án » 27/12/2021 540

Câu 6:

Cho hàm số: 

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho

b) Tìm các giá trị của tham số m để phương trình x3 – 6x2 + m = 0 có 3 nghiệm thực phân biệt.

Xem đáp án » 26/12/2021 373

Câu 7:

Cho hàm số: y = x3 − (m + 4)x2 − 4x + m (1)

a) Tìm các điểm mà đồ thị của hàm số (1) đi qua với mọi giá trị của m.

b) Chứng minh rằng với mọi giá trị của m, đồ thị của hàm số (1) luôn luôn có cực trị.

c) Khảo sát sự biến thiên và vẽ đồ thị (C) của (1) khi m = 0

d) Xác định k để (C) cắt đường thẳng y = kx tại ba điểm phân biệt.

Xem đáp án » 26/12/2021 337

Câu 8:

Tìm giá trị của tham số m để hàm số

a) y = x3 + (m + 3)x2 + mx – 2 đạt cực tiểu tại x = 1

b) y = (m2 + 6m)x33 − 2mx2 + 3x + 1 đạt cực đại tại x = -1;

Xem đáp án » 26/12/2021 298

Câu 9:

Cho hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến của đồ thị (C) , biết hệ số góc của tiếp tuyến bằng –5.

(Đề thi tốt nghiệp THPT năm 2009)

Xem đáp án » 26/12/2021 284

Câu 10:

Khảo sát và vẽ đồ thị các hàm số

a) y = 2 - 3x - x2;

b)x3 - x2 + x;

c) y = -x4 + 2x3 + 3.

Xem đáp án » 26/12/2021 256

Câu 11:

Tìm giá trị của tham số m để hàm số

y = (m - 1)x4 - mx2 + 3 có đúng một cực trị

Xem đáp án » 26/12/2021 236

Câu 12:

Biểu thức tổng quát của hàm số có đò thị như hình 1.6 là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem đáp án » 27/12/2021 234

Câu 13:

Biện luận theo k số nghiệm của phương trình:

a) (x − 1)2 = 2|x − k|

b) (x + 1)2.(2 − x) = k

Xem đáp án » 26/12/2021 210

Câu 14:

Hàm số y = x4 + (m2 - 4)x2 + 5 có ba cực trị khi:

Xem đáp án » 27/12/2021 189

Câu 15:

Giao điểm của đồ thị hàm số Giải sách bài tập Toán 12 | Giải sbt Toán 12 và đường thẳng y = x + 2 là:

Xem đáp án » 27/12/2021 189