Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M. Chứng minh: MN là tiếp tuyến của đường tròn.
Do AB là tiếp tuyến của (O)
Þ OB ^ AB
Mà OB ^ ON
Þ AB // ON (từ vuông góc suy ra song song) hay AM // ON
Chứng minh tương tự
Þ AN // OM
Do 2 tiếp tuyến AB và AC cắt nhau tại A
Þ OA phân giác góc BAC (tính chất tiếp tuyến) hay OA phân giác góc \[\widehat {MAN}\]
Xét tứ giác AMON có: AM // ON, AN // OM, OA phân giác góc \[\widehat {MAN}\]
Þ AMON là hình thoi
Đặt I là trung điểm OA
Þ \[OI = \frac{{OA}}{2} = \frac{{2R}}{2} = R\]hay OI là bán kính của (O)
Do AMON là hình thoi
Þ OA vuông góc với MN tại I (t/c) hay OI vuông góc với MN tại I
Mà OI là bán kính của (O)
Þ MN là tiếp tuyến của (O)
Vậy MN là tiếp tuyến của (O).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Từ điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O) sao cho C nằm giữa M và D. Gọi I là trung điểm của CD. Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh: A, B, K thẳng hàng.
Trong không gian Oxyz, cho hai điểm A(2; 2; 1), \[B\left( {\frac{{ - 8}}{3};\frac{4}{3};\frac{8}{3}} \right)\]. Viết phương trình đường thẳng đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).
Cho hàm số bậc nhất y = (2k – 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số cắt đường thẳng (d’): y = 2x + 1 tại điểm có hoành độ bằng –2.
Cho hình chữ nhật ABCD (AB > BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H. Tứ giác BCEQ là hình gì? Vì sao?
Cho hàm số bậc nhất y = (2k – 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số song song với đường thẳng (m): y = 0,5x – 3.
Cho hình bình hành ABCD, một đường thẳng d đi qua A cắt đường chéo BD tại P, cắt các đường thẳng BC và CD lần lượt là M và N. Chứng minh BM.DN không đổi.
Cho nửa đường tròn (O) đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K; B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM. Gọi Q là giao điểm của các đường thẳng AP, BM. Chứng minh ΔKMN vuông cân.
Cho a, b, c > 0 thoả mãn \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3\]. Tìm giá trị nhỏ nhất của biểu thức:
\[P = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\].
Hình vẽ bên có BE ^ BA, CF ^ CA, EH ^ BC, FK ^ BC, BE = BA và CA = CF. Chứng minh: BH = CK.
Từ bảy chữ số 1; 2; 3; 4; 5; 6; 7, lập các số có ba chữ số đôi một khác nhau. Có thể lập được bao nhiêu số như vậy?
Biết tổng các hệ của khai triển (x² + 1)n bằng 1024. Hãy tìm hệ số của x¹² trong khai triển trên.
Cho tập hợp A = {1; 2; 3; …; 10}. Chọn ngẫu nhiên ba số từ A. Tìm xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.
Cho nửa đường tròn (O) đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K; B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM. Gọi Q là giao điểm của các đường thẳng AP, BM. So sánh hai tam giác ΔAKN và ΔBKM.