Thứ sáu, 04/04/2025
IMG-LOGO

Câu hỏi:

19/07/2024 78

Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB).Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.

a) Chứng minh K là trung điểm của AB.

b) Vẽ MH ^ OI tại H. Chứng minh OB2 = OH.OI.

c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB (ảnh 1)

a) Ta có MA, MB là hai tiếp tuyến của (O) cắt nhau tại M.

Suy ra MA = MB.

Khi đó M nằm trên đường trung trực của đoạn thẳng AB (1)

Lại có OA = OB =R.

Suy ra O nằm trên đường trung trực của đoạn thẳng AB (2)

Từ (1), (2), suy ra MO là đường trung trực của đoạn thẳng AB.

Do đó MO ^ AB tại K và K là trung điểm AB.

b) Xét ∆OHM và ∆OKI, có:

\(\widehat O\) chung.

\[\widehat {OHM} = \widehat {OKI} = 90^\circ \]

Do đó ∆OHM ∆OKI (g.g).

Suy ra \(\frac{{OH}}{{OK}} = \frac{{OM}}{{OI}}\).

Do đó OH.OI = OM.OK.

Xét ∆AOM vuông tại A có AK là đường cao:

OA2 = OK.OM (hệ thức lượng trong tam giác vuông).

Vậy OH.OI = OA2 = OB2 (điều phải chứng minh).

c) Ta có \[\widehat {OAM} = 90^\circ \;\left( {gt} \right)\]

Suy ra O, A, M nội tiếp đường tròn đường kính OM.

Tương tự, ta có O, H, M nội tiếp đường tròn đường kính OM.

Khi đó tứ giác AHOM nội tiếp đường tròn đường kính OM.

Suy ra \(\widehat {AMO} = \widehat {AHI}\)(1)

Ta có \[\widehat {OAM} = \widehat {OBM} = 90^\circ \](MA, MB là các tiếp tuyến của đường tròn (O)).

Suy ra \[\widehat {OAM} + \widehat {OBM} = 180^\circ \]

Do đó tứ giác OAMB nội tiếp đường tròn đường kính OM.

\[\widehat {AMO} = \widehat {ABO}\](cùng chắn cung ) (2)

Từ (1), (2), suy ra \[\widehat {ABO} = \widehat {AHI}\]

Xét ∆IHN và ∆IKO, có:

\[\widehat I\] chung.

\[\widehat {IHN} = \widehat {IKO} = 90^\circ \]

Do đó ∆IHN ∆IKO (g.g).

Suy ra \(\frac{{IH}}{{IK}} = \frac{{IN}}{{IO}}\)

Do đó IH.IO = IN.IK   (3)

Xét ∆AHI và ∆OBI, có:

\[\widehat I\]chung.

\[\widehat {ABO} = \widehat {AHI}\](chứng minh trên).

Do đó ∆AHI ∆OBI (g.g).

Suy ra \[\frac{{IA}}{{IO}} = \frac{{IH}}{{IB}}\].

Do đó IA.IB = IH.IO (4)

Từ (3), (4), suy ra IA.IB = IN.IK (điều phải chứng minh).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1,2,3.

Xem đáp án » 02/04/2024 546

Câu 2:

Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1,2,3 luôn đứng cạnh nhau.

Xem đáp án » 02/04/2024 149

Câu 3:

Thửa ruộng hình chữ nhật có chiều dài 60 m, chiều rộng bằng \(\frac{2}{3}\) chiều dài. Trung bình cứ 100 mét vuông thì thu hoạch được 50 kg thóc. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu ki-lô-gam thóc?

Xem đáp án » 02/04/2024 127

Câu 4:

Tìm m để bất phương trình 2x− (2m + 1)x + m− 2m + 2 ≤ 0 nghiệm đúng với mọi \[x \in \left[ {\frac{1}{2};\;2} \right]\]

Xem đáp án » 02/04/2024 125

Câu 5:

Tìm m để mọi x Î [0; +∞) đều là nghiệm của bất phương trình:

(m2 − 1)x2 − 8mx + 9 − m2 ≥ 0

Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc (0; 1)

Xem đáp án » 02/04/2024 123

Câu 6:

Tìm m để đồ thị hàm số bậc nhất y = mx − 4 cắt đường thẳng y = −3x + 2 tại điểm có tung độ bằng 5.

Xem đáp án » 01/04/2024 112

Câu 7:

Một thửa ruộng hình chữ nhật có chiều dài 60m, chiều dài bằng \(\frac{3}{2}\) chiều rộng, trên thửa ruộng đó người ta trồng lúa cứ 100m2 thu hoạch được 50 kg. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu tạ thóc?

Xem đáp án » 02/04/2024 107

Câu 8:

Cho (O) và (O') cắt nhau tại A và B. Vẽ hình bình hành OBO'C.

Chứngminh: AC//OO'

Xem đáp án » 02/04/2024 85

Câu 9:

Tam giác ABC vuông tại A, AB = a, AC = 3a.Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.

a) Chứng minh \(\frac{{DE}}{{DB}} = \frac{{DB}}{{DC}}\).

b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.

c) Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng hai cách.

Xem đáp án » 02/04/2024 84

Câu 10:

Thiết diện đi qua trục của hình nón đỉnh S là tam giác vuông cân SAB có cạnh cạnh huyền bằng \[a\sqrt 2 \]. Diện tích toàn phần Stp của hình nón và thể tích V của khối nón tương ứng đã cho là bao nhiêu?

Xem đáp án » 02/04/2024 74

Câu 11:

Cho 2 số dương x, y thay đổi thỏa mãn xy = 2. Tìm GTNN của biểu thức:\(M = \frac{1}{x} + \frac{2}{y} + \frac{3}{{2x + y}}\).

Xem đáp án » 02/04/2024 71

Câu 12:

Cho đoạn thẳng AB. Xác định vị trí của điểm C trên đoạn thẳng AB sao cho CA ≤ CB.

Xem đáp án » 02/04/2024 70

Câu 13:

Cho phương trình: x2 − (m − 2)x− m − 1 = 0 (với m là tham số)

a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m.

b) Tìm m thỏa mãn hệ thức: (x1 − x2)2 − 3x1x2 = 21

Xem đáp án » 02/04/2024 69

Câu 14:

Xét vị trí tương đối của hai đường thẳng d1: x − 2y + 1 = 0 và d2: −3x + 6y – 10 = 0.

Xem đáp án » 02/04/2024 69

Câu 15:

Cho số phức z thỏa mãn |z + i + 1| = |z  − 2i|. Tìm giá trị nhỏ nhất |z|.

Xem đáp án » 02/04/2024 68

Câu hỏi mới nhất

Xem thêm »
Xem thêm »