Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB).Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.
a) Chứng minh K là trung điểm của AB.
b) Vẽ MH ^ OI tại H. Chứng minh OB2 = OH.OI.
c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.
a) Ta có MA, MB là hai tiếp tuyến của (O) cắt nhau tại M.
Suy ra MA = MB.
Khi đó M nằm trên đường trung trực của đoạn thẳng AB (1)
Lại có OA = OB =R.
Suy ra O nằm trên đường trung trực của đoạn thẳng AB (2)
Từ (1), (2), suy ra MO là đường trung trực của đoạn thẳng AB.
Do đó MO ^ AB tại K và K là trung điểm AB.
b) Xét ∆OHM và ∆OKI, có:
\(\widehat O\) chung.
\[\widehat {OHM} = \widehat {OKI} = 90^\circ \]
Do đó ∆OHM ᔕ ∆OKI (g.g).
Suy ra \(\frac{{OH}}{{OK}} = \frac{{OM}}{{OI}}\).
Do đó OH.OI = OM.OK.
Xét ∆AOM vuông tại A có AK là đường cao:
OA2 = OK.OM (hệ thức lượng trong tam giác vuông).
Vậy OH.OI = OA2 = OB2 (điều phải chứng minh).
c) Ta có \[\widehat {OAM} = 90^\circ \;\left( {gt} \right)\]
Suy ra O, A, M nội tiếp đường tròn đường kính OM.
Tương tự, ta có O, H, M nội tiếp đường tròn đường kính OM.
Khi đó tứ giác AHOM nội tiếp đường tròn đường kính OM.
Suy ra \(\widehat {AMO} = \widehat {AHI}\)(1)
Ta có \[\widehat {OAM} = \widehat {OBM} = 90^\circ \](MA, MB là các tiếp tuyến của đường tròn (O)).
Suy ra \[\widehat {OAM} + \widehat {OBM} = 180^\circ \]
Do đó tứ giác OAMB nội tiếp đường tròn đường kính OM.
Vì \[\widehat {AMO} = \widehat {ABO}\](cùng chắn cung ) (2)
Từ (1), (2), suy ra \[\widehat {ABO} = \widehat {AHI}\]
Xét ∆IHN và ∆IKO, có:
\[\widehat I\] chung.
\[\widehat {IHN} = \widehat {IKO} = 90^\circ \]
Do đó ∆IHN ᔕ ∆IKO (g.g).
Suy ra \(\frac{{IH}}{{IK}} = \frac{{IN}}{{IO}}\)
Do đó IH.IO = IN.IK (3)
Xét ∆AHI và ∆OBI, có:
\[\widehat I\]chung.
\[\widehat {ABO} = \widehat {AHI}\](chứng minh trên).
Do đó ∆AHI ᔕ ∆OBI (g.g).
Suy ra \[\frac{{IA}}{{IO}} = \frac{{IH}}{{IB}}\].
Do đó IA.IB = IH.IO (4)
Từ (3), (4), suy ra IA.IB = IN.IK (điều phải chứng minh).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1,2,3.
Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1,2,3 luôn đứng cạnh nhau.
Tìm m để mọi x Î [0; +∞) đều là nghiệm của bất phương trình:
(m2 − 1)x2 − 8mx + 9 − m2 ≥ 0
Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc (0; 1)
Tìm m để bất phương trình 2x2 − (2m + 1)x + m2 − 2m + 2 ≤ 0 nghiệm đúng với mọi \[x \in \left[ {\frac{1}{2};\;2} \right]\]
Thửa ruộng hình chữ nhật có chiều dài 60 m, chiều rộng bằng \(\frac{2}{3}\) chiều dài. Trung bình cứ 100 mét vuông thì thu hoạch được 50 kg thóc. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu ki-lô-gam thóc?
Tìm m để đồ thị hàm số bậc nhất y = mx − 4 cắt đường thẳng y = −3x + 2 tại điểm có tung độ bằng 5.
Một thửa ruộng hình chữ nhật có chiều dài 60m, chiều dài bằng \(\frac{3}{2}\) chiều rộng, trên thửa ruộng đó người ta trồng lúa cứ 100m2 thu hoạch được 50 kg. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu tạ thóc?
Cho (O) và (O') cắt nhau tại A và B. Vẽ hình bình hành OBO'C.
Chứngminh: AC//OO'
Cho số phức z thỏa mãn |z + i + 1| = |z − 2i|. Tìm giá trị nhỏ nhất |z|.
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.
Cho hai hàm số y=x2 và y=2x − m+2.Tìm m để đồ thị hai hàm số trên chỉ có một điểm chung? Tìm tọa độ điểm chung đó?
Trong tam giác ABC vuông tại A có \(AC = 3a;\;AB = 3\sqrt 3 a,\;\cot B\) bằng?
Xét vị trí tương đối của hai đường thẳng d1: x − 2y + 1 = 0 và d2: −3x + 6y – 10 = 0.
Cho 2 số x, y > 0 thỏa mãn x + y = 1.
Tìm GTNN của: \(P = {\left( {2x + \frac{1}{x}} \right)^2} + {\left( {2y + \frac{1}{y}} \right)^2}\).