Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1,2,3 luôn đứng cạnh nhau.
Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)
Buộc 3 chữ số 1, 2, 3 thành 1 cụm, đặt là A
Hoán vị các chữ số 1, 2, 3 cho nhau ta được 3! = 6 khả năng xảy ra của A
Có 3 cách chọn vị trí cho A trong \(\overline {abcde} \)
Sau khi chọn xong vị trí cho A, 2 chữ số còn lại có \(A_7^2 = 42\)cách chọn
Như vậy, sẽ có 3.6.42 = 756 số được tạo thành tính cả trường hợp a = 0.
Xét a = 0:
Khi đó, ta có 2 vị trí cho A, và mỗi vị trí có 6 khả năng xảy ra của A (Hoán vị 1, 2, 3)
Chữ số còn lại có 6 cách chọn
Vậy nếu a = 0 thì sẽ có 72 số được tạo thành.
Vậy, số số tự nhiên có 5 chữ số (a khác 0) thỏa mãn yêu cầu bài toán: 756 − 72 = 684 số tự nhiên.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1,2,3.
Tìm m để mọi x Î [0; +∞) đều là nghiệm của bất phương trình:
(m2 − 1)x2 − 8mx + 9 − m2 ≥ 0
Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc (0; 1)
Tìm m để bất phương trình 2x2 − (2m + 1)x + m2 − 2m + 2 ≤ 0 nghiệm đúng với mọi \[x \in \left[ {\frac{1}{2};\;2} \right]\]
Thửa ruộng hình chữ nhật có chiều dài 60 m, chiều rộng bằng \(\frac{2}{3}\) chiều dài. Trung bình cứ 100 mét vuông thì thu hoạch được 50 kg thóc. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu ki-lô-gam thóc?
Tìm m để đồ thị hàm số bậc nhất y = mx − 4 cắt đường thẳng y = −3x + 2 tại điểm có tung độ bằng 5.
Một thửa ruộng hình chữ nhật có chiều dài 60m, chiều dài bằng \(\frac{3}{2}\) chiều rộng, trên thửa ruộng đó người ta trồng lúa cứ 100m2 thu hoạch được 50 kg. Hỏi trên cả thửa ruộng thu hoạch được bao nhiêu tạ thóc?
Cho (O) và (O') cắt nhau tại A và B. Vẽ hình bình hành OBO'C.
Chứngminh: AC//OO'
Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB).Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.
a) Chứng minh K là trung điểm của AB.
b) Vẽ MH ^ OI tại H. Chứng minh OB2 = OH.OI.
c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.
Cho số phức z thỏa mãn |z + i + 1| = |z − 2i|. Tìm giá trị nhỏ nhất |z|.
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.
Cho hai hàm số y=x2 và y=2x − m+2.Tìm m để đồ thị hai hàm số trên chỉ có một điểm chung? Tìm tọa độ điểm chung đó?
Xét vị trí tương đối của hai đường thẳng d1: x − 2y + 1 = 0 và d2: −3x + 6y – 10 = 0.
Cho phương trình: x2 − (m − 2)x− m − 1 = 0 (với m là tham số)
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m.
b) Tìm m thỏa mãn hệ thức: (x1 − x2)2 − 3x1x2 = 21
Cho 2 số x, y > 0 thỏa mãn x + y = 1.
Tìm GTNN của: \(P = {\left( {2x + \frac{1}{x}} \right)^2} + {\left( {2y + \frac{1}{y}} \right)^2}\).